6,398 research outputs found

    The Effect of Ru substitution for Ni on the superconductivity in MgCNi3-xRux

    Full text link
    The superconductor MgCNi3 has been chemically doped by partial substitution of Ru for Ni in the solid solution MgCNi3-xRux for 0<x<0.5. Magnetic and specific heat measurements show that the Sommerfeld parameter (gamma_exp) and TC decrease immediately on Ru substitution, but that a TC above 2K is maintained even for a relatively large decrease in gamma_exp. Ferromagnetism is not observed to develop through Ru substitution, and the normal state magnetic susceptibility is suppressed.Comment: 18 pages, 13 figure

    Coupled frustrated quantum spin-1/2 chains with orbital order in volborthite Cu3V2O7(OH)2(H2O)2

    Full text link
    We present a microscopic magnetic model for the spin-liquid candidate volborthite Cu3V2O7(OH)2(H2O)2. The essentials of this DFT-based model are (i) the orbital ordering of Cu(1) 3d 3z2-r2 and Cu(2) 3d 3x2-y2, (ii) three relevant couplings J_ic, J_1 and J_2, (iii) the ferromagnetic nature of J_1 and (iv) frustration governed by the next-nearest-neighbor exchange interaction J_2. Our model implies magnetism of frustrated coupled chains in contrast to the previously proposed anisotropic kagome model. Exact diagonalization studies reveal agreement with experiments.Comment: 5 pages, 4 figures + supplementar

    Generation of flux tube waves in stellar convection zones. 1: Longitudinal tube waves

    Get PDF
    The source functions and the energy fluxes are derived for wave generation in magnetic flux tubes embedded in an otherwise magnetic- field free, turbulent, and compressible fluid. Specific results for the generation of longitudinal tube waves are presented

    Role of C in MgC_xNi_3 investigated from first principles

    Full text link
    The influence of vacancies in the CC sub-lattice of MgCNi3MgCNi_{3}, on its structural, electronic and magnetic properties are studied by means of the density-functional based Korringa-Kohn-Rostoker Green's function method formulated in the atomic sphere approximation. Disorder is taken into account by means of coherent-potential approximation. Characterizations representing the change in the lattice properties include the variation in the equilibrium lattice constants, bulk modulus and pressure derivative of the bulk modulus, and that of electronic structure include the changes in the, total, partial and k\mathbf{k}-resolved density of states. The incipient magnetic properties are studied by means of fixed-spin moment method of alloy theory, together in conjunction with the phenomenological Ginzburg-Landau equation for magnetic phase transition. The first-principles calculations reveal that due to the breaking of the CC-NiNi bonds, some of the NiNi 3d states, which were lowered in energy due to strong hybridization, are transfered back to higher energies thereby increasing the itinerant character in the material. The Bloch spectral densities evaluated at the high symmetry points however reveal that the charge redistribution is not uniform over the cubic Brillouin zone, as new states are seen to be created at the Γ\Gamma point, while a shift in the states on the energy scale are seen at other high symmetry points

    Visualising Java Coupling and Fault Proneness

    Get PDF
    In this paper, a tool is described for visualising the Coupling Between Objects (CBO) metric for Java systems, decomposing it into coupling collaborators and using colour to denote the object-oriented mechanisms at work for each couple. The resulting visualisation is also envisaged to be useful for general program comprehension and is integrated into Java development in the Eclipse IDE. Evidence is also given that the visualisation may help detect classes tending to be less fault-prone than would be expected from inspection of their CBO values alone

    A Comparison and Evaluation of Variants in the Coupling Between Objects Metric

    Get PDF
    The Coupling Between Objects metric (CBO) is a widely-used metric but, in practice, ambiguities in its correct implementation have led to different values being computed by different metric tools and studies. CBO has often been shown to correlate with defect occurrence in software systems, but the use of different calculations is commonly overlooked. This paper investigates the varying interpretations of CBO used by those metrics tools and researchers and defines a set of metrics representing the different computational approaches used. These metrics are calculated for a large-scale Java system and logistic regression used to correlate them with defect data obtained by analysing the system’s version tracking records. The different variations of CBO are shown to have significantly different correlations to defects. Regarding results, a clear binary divide was found between CBO values which, on the one hand, predicted a defect and, on the other, those that did not. The results, therefore, show that a clarification or unambiguous re-definition of CBO is both desirable and essential for a general consensus on its use. Moreover, applications of the metric must pay close attention to the actual method of calculation being used and, conclusions and comparisons made as a result

    Theoretical de Haas-van Alphen Data and Plasma Frequencies of MgB2 and TaB2

    Full text link
    The de Haas-van Alphen-frequencies as well as the effective masses for a magnetic field parallel to the crystallographic c-axis are calculated within the local spin density approximation (LSDA) for MgB2 and TaB2. In addition, we analyze the plasma frequencies computed for each Fermi surface sheet. We find a large anisotropy of Fermi velocities in MgB2 in difference to the nearly isotropic behavior in TaB2. We compare calculations performed within the relativistic non-full potential augmented-spherical-wave (ASW) scheme and the scalar-relativistic full potential local orbital (FPLO) scheme. A significant dependence for small cross sections on the bandstructure method is found. The comparison with the first available experimental de Haas-van Alphen-data by Yelland et al. (Ref. 19) shows deviations from the electronic structure calculated within both L(S)DA approaches although the cross section predicted by FPLO are closer to the experimental data. The elucidation of the relevant many-body effects beyond the standard LDA is considered as a possible key problem to understand the superconductivity in MgB2.Comment: Typos corrected, 3references added. Extended and corrected version of S. Elgazzar et al., Solid State Comm. v. 121, 99 (2002). 7pages, 4figures, AIP Conference Proc. "Correlated Electron Systems and High-Tc Superconductors" (ed. F. Mancini) (October 2001, Salerno, Italy

    Electronic Structure of ZnCNi3

    Full text link
    According to a recent report by Park et al, ZnCNi3 is isostructural and isovalent to the superconducting (Tc = 8 K) anti-perovskite, MgCNi3, but shows no indication of a superconducting transition down to 2K. A comparison of calculated electronic structures shows that the main features of MgCNi3, particularly the van Hove singularity near the Fermi energy, are preserved in ZnCNi3. Thus the reported lack of superconductivity in ZnCNi3 is not explainable in terms of Tc being driven to a very low value by a small Fermi level density of states. We propose that the lack of superconductivity, the small value of the linear specific heat coefficient, gamma, and the discrepancy between theoretical and experimental lattice constants can all be explained if the material is assumed to be a C-deficient alpha-ZnCNi3 similar to the analogous non-superconducting phase of MgCNi3
    corecore