325 research outputs found

    LIBS experiments for quantitative detection of retained fuel

    Get PDF
    Abstract Laser Induced Breakdown Spectroscopy (LIBS) provides chemical information from atomic and ionic plasma emissions generated by laser vaporization of a sample. At the ENEA research center, in collaboration with IPPLM, an equipment has been set up to qualitatively and quantitatively determine the chemical composition of impurities deposited on Plasma Facing Components (PFC). The strength of the LIBS, for its capability of light elements detection, is fully exploited to determine the deuterium content since this element can be considered as the best choice proxy for tritium; the latter being is of great importance in assessing safe conditions to assure the continuous operation in nuclear fusion tokamak. Here we present the results of the Double Pulse LIBS (DP-LIBS) probing of deuterated samples with the simultaneous optical detection by medium-resolution and high-resolution spectrometer. Deuterium emission at 656.1 nm has been detected then the elemental composition has been quantified by applying the Calibration Free (CF) approach. The obtained results demonstrate that the DP-LIBS technique combined with CF analysis is suitable for the quantitative determination of tritium content inside the PFCs of next fusion devices like ITER

    Protons accelerated in the target normal sheath acceleration regime by a femtosecond laser

    Get PDF
    Advanced targets based on thin films of graphene oxide covered by metallic layers have been irradiated at high laser intensity (∼1019 W/cm2) with 40 fs laser pulses to investigate the forward ion acceleration in the target normal sheath acceleration regime. A time-of-flight technique was employed with silicon-carbide detectors and ion collectors as fast on-line plasma diagnostics. At the optimized conditions of the laser focus position with respect to the target surface was measured the maximum proton energy using Au metallic films. A maximum proton energy of 2.85 MeV was measured using the Au metallization of 200 nm. The presence of graphene oxide facilitates the electron crossing of the foil minimizing the electron scattering and increasing the electric field driving the ion acceleration. The effect of plasma electron density control using the graphene oxide is presented and discussed

    Study of shock waves generation, hot electron production and role of parametric instabilities in an intensity regime relevant for the shock ignition

    Get PDF
    We present experimental results at intensities relevant to Shock Ignition obtained at the sub-ns Prague Asterix Laser System in 2012 . We studied shock waves produced by laser-matter interaction in presence of a pre-plasma. We used a first beam at 1ω (1315 nm) at 7 × 10 13 W/cm 2 to create a pre-plasma on the front side of the target and a second at 3ω (438 nm) at ∼ 10 16 W/cm 2 to create the shock wave. Multilayer targets composed of 25 (or 40 μm) of plastic (doped with Cl), 5 μm of Cu (for Kα diagnostics) and 20 μm of Al for shock measurement were used. We used X-ray spectroscopy of Cl to evaluate the plasma temperature, Kα imaging and spectroscopy to evaluate spatial and spectral properties of the fast electrons and a streak camera for shock breakout measurements. Parametric instabilities (Stimulated Raman Scattering, Stimulated Brillouin Scattering and Two Plasmon Decay) were studied by collecting the back scattered light and analysing its spectrum. Back scattered energy was measured with calorimeters. To evaluate the maximum pressure reached in our experiment we performed hydro simulations with CHIC and DUED codes. The maximum shock pressure generated in our experiment at the front side of the target during laser-interaction is 90 Mbar. The conversion efficiency into hot electrons was estimated to be of the order of ∼ 0.1% and their mean energy in the order ∼50 keV. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distributio

    SOLUS: An innovative multimodal imaging system to improve breast cancer diagnosis through diffuse optics and ultrasounds

    Get PDF
    To improve non-invasively the specificity in the diagnosis of breast cancer after a positive screening mammography or doubt/suspicious ultrasound examination, the SOLUS project developed a multimodal imaging system that combines: B-mode ultrasound (US) scans (to assess morphology), Color Doppler (to visualize vascularization), shear-wave elastography (to measure stiffness), and time domain multi-wavelength diffuse optical tomography (to estimate tissue composition in terms of oxy- and deoxy-hemoglobin, lipid, water, and collagen concentrations). The multimodal probe arranges 8 innovative photonic modules (optodes) around the US transducer, providing capability for optical tomographic reconstruction. For more accurate estimate of lesion composition, US-assessed morphological priors can be used to guide the optical reconstructions. Each optode comprises: i) 8 picosecond pulsed laser diodes with different wavelengths, covering a wide spectral range (635-1064 nm) for good probing of the different tissue constituents; ii) a large-area (variable, up to 8.6 mm2) fast-gated digital Silicon Photomultiplier; iii) the acquisition electronics to record the distribution of time-of-flight of the re-emitted photons. The optode is the basic element of the optical part of the system, but is also a stand-alone, ultra-compact (about 4 cm3) device for time domain multi-wavelength diffuse optics, with potential application in various fields

    SOLUS: a novel multimodal approach to ultrasound and diffuse optics imaging of breast cancer

    Get PDF
    A multimodal instrument for breast imaging was developed, combining ultrasound (morphology), shear wave elastography (stiffness), and time domain multiwavelength diffuse optical tomography (blood, water, lipid, collagen) to improve the non-invasive diagnosis of breast cancer

    New physiological activities of myosuppressin, sulfakinin and NVP-like peptide in Zophobas atratus beetle

    Get PDF
    Three neuropeptides Zopat-MS-2 (pEDVDHVFLRFa), Zopat-SK-1 (pETSDDYGHLRFa) and Zopat-NVPL-4trunc. (GRWGGFA), recently isolated from the neuroendocrine system of the Zophobas atratus beetle, were tested for their myotropic and hyperglycaemic activities in this species. These peptides exerted differentiated dose-dependent and tissue specific physiological effects. Zopat-MS-2 inhibited contractions of the isolated heart, ejaculatory duct, oviduct and hindgut of adult beetles and induced bimodal effects in the heart contractile activity of pupae in vivo. It also increased the haemolymph free sugar level in larvae of this species, apart from myotropic activity. Zopat-SK-1 showed myostimulatory action on the isolated hindgut of the adult beetles, but it decreased contractions of the heart, ejaculatory duct and oviduct. Injections of this peptide at a dose of 2 μg also caused delayed cardioinhibitory effects on the heartbeat of the pupae. Together with the ability to increase free sugar level in the haemolymph of larvae these were new physiological activities of sulfakinins in insects. Zopat-NVPL-4trunc. inhibited the muscle contractions of the two organs: hindgut and ejaculatory duct but it was inactive on the oviduct and the heart of the adult beetles. This peptide also increased free sugar level concentration in the haemolymph of Z. atratus larvae. These physiological actions are the first biological activities discovered for this group of the insect peptides. The present work showed pleiotropic activity of three neuropeptides and indicates that the visceral muscle contractions and the haemolymph sugar homeostasis in Z. atratus are regulated by complex mechanisms

    SOLUS: Multimodal System Combining Ultrasounds and Diffuse Optics for Tomographic Imaging of Breast Cancer

    Get PDF
    An innovative multimodal system for breast imaging was developed combining in a single probe B-mode ultrasound, shear-wave elastography and multi-wavelength time-domain diffuse optical tomography. The clinical validation is ongoing aiming at improving the diagnostic specificity

    Initial examples of the SOLUS multimodal potential

    Get PDF
    We present initial evidence of the SOLUS potential for the multimodal non-invasive diagnosis of breast cancer by describing the correlation between optical and standard radiological data and analyzing a case study
    corecore