32 research outputs found

    Optimisation of Perioperative Cardiovascular Management to Improve Surgical Outcome II (OPTIMISE II) trial: study protocol for a multicentre international trial of cardiac output-guided fluid therapy with low-dose inotrope infusion compared with usual care in patients undergoing major elective gastrointestinal surgery.

    Get PDF
    INTRODUCTION: Postoperative morbidity and mortality in older patients with comorbidities undergoing gastrointestinal surgery are a major burden on healthcare systems. Infections after surgery are common in such patients, prolonging hospitalisation and reducing postoperative short-term and long-term survival. Optimal management of perioperative intravenous fluids and inotropic drugs may reduce infection rates and improve outcomes from surgery. Previous small trials of cardiac-output-guided haemodynamic therapy algorithms suggested a modest reduction in postoperative morbidity. A large definitive trial is needed to confirm or refute this and inform widespread clinical practice. METHODS: The Optimisation of Perioperative Cardiovascular Management to Improve Surgical Outcome II (OPTIMISE II) trial is a multicentre, international, parallel group, open, randomised controlled trial. 2502 high-risk patients undergoing major elective gastrointestinal surgery will be randomly allocated in a 1:1 ratio using minimisation to minimally invasive cardiac output monitoring to guide protocolised administration of intravenous fluid combined with low-dose inotrope infusion, or usual care. The trial intervention will be carried out during and for 4 hours after surgery. The primary outcome is postoperative infection of Clavien-Dindo grade II or higher within 30 days of randomisation. Participants and those delivering the intervention will not be blinded to treatment allocation; however, outcome assessors will be blinded when feasible. Participant recruitment started in January 2017 and is scheduled to last 3 years, within 50 hospitals worldwide. ETHICS/DISSEMINATION: The OPTIMISE II trial has been approved by the UK National Research Ethics Service and has been approved by responsible ethics committees in all participating countries. The findings will be disseminated through publication in a widely accessible peer-reviewed scientific journal. TRIAL REGISTRATION NUMBER: ISRCTN39653756.The OPTIMISE II trial is supported by Edwards Lifesciences (Irvine, CA) and the UK National Institute for Health Research through RMP’s NIHR Professorship

    Physiological Signal Processing for Individualized Anti-nociception Management During General Anesthesia: a Review.

    Full text link
    peer reviewedOBJECTIVE: The aim of this paper is to review existing technologies for the nociception / anti-nociception balance evaluation during surgery under general anesthesia. METHODS: General anesthesia combines the use of analgesic, hypnotic and muscle-relaxant drugs in order to obtain a correct level of patient non-responsiveness during surgery. During the last decade, great efforts have been deployed in order to find adequate ways to measure how anesthetic drugs affect a patient's response to surgical nociception. Nowadays, though some monitoring devices allow obtaining information about hypnosis and muscle relaxation, no gold standard exists for the nociception / anti-nociception balance evaluation. Articles from the PubMed literature search engine were reviewed. As this paper focused on surgery under general anesthesia, articles about nociception monitoring on conscious patients, in post-anesthesia care unit or in intensive care unit were not considered. RESULTS: In this article, we present a review of existing technologies for the nociception / anti-nociception balance evaluation, which is based in all cases on the analysis of the autonomous nervous system activity. Presented systems, based on sensors and physiological signals processing algorithms, allow studying the patients' reaction regarding anesthesia and surgery. CONCLUSION: Some technological solutions for nociception / antinociception balance monitoring were described. Though presented devices could constitute efficient solutions for individualized anti-nociception management during general anesthesia, this review of current literature emphasizes the fact that the choice to use one or the other mainly relies on the clinical context and the general purpose of the monitoring
    corecore