130 research outputs found
Observation of Chiral character deep in the topological insulating regime in BiSb
BiSb is a topological insulator (TI) for --. Close to the Topological phase transition at , a magnetic
field induced Weyl semi-metal (WSM) state is stabilized due to the splitting of
the Dirac cone into two Weyl cones of opposite chirality. A signature of the
Weyl state is the observation of a Chiral anomaly [negative longitudnal
magnetoresistance (LMR)] and a violation of the Ohm's law (non-linear ).
We report the unexpected discovery of a Chiral anomaly in the whole range () of the TI state. This points to a field induced WSM state
in an extended range and not just near the topological transition at . Surprisingly, the strongest Weyl phase is found at with a
non-saturating negative LMR much larger than observed for . The
negative LMR vanishes rapidly with increasing angle between and .
Additionally, non-linear -- is found for indicating a
violation of Ohm's law. This unexpected observation of a strong Weyl state in
the whole TI regime in BiSb points to a gap in our understanding of
the detailed electronic structure evolution in this alloy system.Comment: 5 Pages, 4 figure
Spin and recombination dynamics of excitons and free electrons in p-type GaAs : effect of carrier density
Carrier and spin recombination are investigated in p-type GaAs of acceptor
concentration NA = 1.5 x 10^(17) cm^(-3) using time-resolved photoluminescence
spectroscopy at 15 K. At low pho- tocarrier concentration, acceptors are mostly
neutral and photoelectrons can either recombine with holes bound to acceptors
(e-A0 line) or form excitons which are mostly trapped on neutral acceptors
forming the (A0X) complex. It is found that the spin lifetime is shorter for
electrons that recombine through the e-A0 transition due to spin relaxation
generated by the exchange scattering of free electrons with either trapped or
free holes, whereas spin flip processes are less likely to occur once the
electron forms with a free hole an exciton bound to a neutral acceptor. An
increase of exci- tation power induces a cross-over to a regime where the
bimolecular band-to-band (b-b) emission becomes more favorable due to screening
of the electron-hole Coulomb interaction and ionization of excitonic complexes
and free excitons. Then, the formation of excitons is no longer possible, the
carrier recombination lifetime increases and the spin lifetime is found to
decrease dramatically with concentration due to fast spin relaxation with free
photoholes. In this high density regime, both the electrons that recombine
through the e-A0 transition and through the b-b transition have the same spin
relaxation time.Comment: 4 pages, 5 figure
Electron spin quantum beats in positively charged quantum dots: nuclear field effects
We have studied the electron spin coherence in an ensemble of positively
charged InAs/GaAs quantum dots. In a transverse magnetic field, we show that
two main contributions must be taken into account to explain the damping of the
circular polarization oscillations. The first one is due to the nuclear field
fluctuations from dot to dot experienced by the electron spin. The second one
is due to the dispersion of the transverse electron Lande g-factor, due to the
inherent inhomogeneity of the system, and leads to a field dependent
contribution to the damping. We have developed a model taking into account both
contributions, which is in good agreement with the experimental data. This
enables us to extract the pure contribution to dephasing due to the nuclei.Comment: 10 pages, 6 figure
Spectrally narrow exciton luminescence from monolayer MoS2 exfoliated onto epitaxially grown hexagonal BN
The strong light-matter interaction in transition Metal dichalcogenides
(TMDs) monolayers (MLs) is governed by robust excitons. Important progress has
been made to control the dielectric environment surrounding the MLs, especially
through hexagonal boron nitride (hBN) encapsulation, which drastically reduces
the inhomogeneous contribution to the exciton linewidth. Most studies use
exfoliated hBN from high quality flakes grown under high pressure. In this
work, we show that hBN grown by molecular beam epitaxy (MBE) over a large
surface area substrate has a similarly positive impact on the optical emission
from TMD MLs. We deposit MoS and MoSe MLs on ultrathin hBN films (few
MLs thick) grown on Ni/MgO(111) by MBE. Then we cover them with exfoliated hBN
to finally obtain an encapsulated sample : exfoliated hBN/TMD ML/MBE hBN. We
observe an improved optical quality of our samples compared to TMD MLs
exfoliated directly on SiO substrates. Our results suggest that hBN grown
by MBE could be used as a flat and charge free substrate for fabricating
TMD-based heterostructures on a larger scale.Comment: 5 pages, 3 figure
Exciton states in monolayer MoSe2 and MoTe2 probed by upconversion spectroscopy
Transitions metal dichalcogenides (TMDs) are direct semiconductors in the
atomic monolayer (ML) limit with fascinating optical and spin-valley
properties. The strong optical absorption of up to 20 % for a single ML is
governed by excitons, electron-hole pairs bound by Coulomb attraction. Excited
exciton states in MoSe and MoTe monolayers have so far been elusive due
to their low oscillator strength and strong inhomogeneous broadening. Here we
show that encapsulation in hexagonal boron nitride results in emission line
width of the A:1 exciton below 1.5 meV and 3 meV in our MoSe and
MoTe monolayer samples, respectively. This allows us to investigate the
excited exciton states by photoluminescence upconversion spectroscopy for both
monolayer materials. The excitation laser is tuned into resonance with the
A:1 transition and we observe emission of excited exciton states up to 200
meV above the laser energy. We demonstrate bias control of the efficiency of
this non-linear optical process. At the origin of upconversion our model
calculations suggest an exciton-exciton (Auger) scattering mechanism specific
to TMD MLs involving an excited conduction band thus generating high energy
excitons with small wave-vectors. The optical transitions are further
investigated by white light reflectivity, photoluminescence excitation and
resonant Raman scattering confirming their origin as excited excitonic states
in monolayer thin semiconductors.Comment: 14 pages, 7 figures, main text and appendi
Toposes of connectivity spaces. Morita equivalences with topological spaces and partially ordered sets in the finite case
This paper has two parts. First, we recall and detail the definition of the
Grothendieck topos of a connectivity space, that is the topos of sheaves on
such a space. In the second part, we prove that every finite connectivity space
is Morita-equivalent to a finite topological space, and vice versa (we have
given this proof in several, but we haven't yet shared this in writing).Comment: in Frenc
Polarization Control of the Non-linear Emission on Semiconductor Microcavities
The degree of circular polarization () of the non-linear emission in
semiconductor microcavities is controlled by changing the exciton-cavity
detuning. The polariton relaxation towards \textbf{K} cavity-like
states is governed by final-state stimulated scattering. The helicity of the
emission is selected due to the lifting of the degeneracy of the spin
levels at \textbf{K} . At short times after a pulsed excitation
reaches very large values, either positive or negative, as a result of
stimulated scattering to the spin level of lowest energy ( spin for
positive/negative detuning).Comment: 8 pages, 3 eps figures, RevTeX, Physical Review Letters (accepted
Time-resolved cathodoluminescence of InGaAs/AlGaAs tetrahedral pyramidal quantum structures
An original time resolved cathodoluminescence set up has been used to investigate the optical properties and the carrier transport in quantum structures located in InGaAs/AlGaAs tetrahedral pyramids. An InGaAs quantum dot formed just below the top of the pyramid is connected to four types of low-dimensional barriers: InGaAs quantum wires on the edges of the pyramid, InGaAs quantum wells on the (111)A facets and segregated AlGaAs vertical quantum wire and AlGaAs vertical quantum wells formed at the centre and at the pyramid edges. Experiments were performed at a temperature of 92K, an accelerating voltage of 10kV and a beam probe current of 10pA. The cathodoluminescence spectrum shows five luminescence peaks. Rise and decay times for the different emission wavelengths provide a clear confirmation of the peak attribution (previously done with other techniques) to the different nanostructures grown in a pyramid. Moreover, experimental results suggest a scenario where carriers diffuse from the lateral quantum structures towards the central structures (the InGaAs quantum dot and the segregated AlGaAs vertical quantum wire) via the InGaAs quantum wires on the edges of the pyramid. According to this hypothesis, we have modeled the carrier diffusion along these quantum wires. An ambipolar carrier mobility of 1400cm2/Vâs allows to obtain a good fit to all temporal dependence
- âŠ