9 research outputs found

    Thermodynamics of Mixtures Containing Amines. XV. Liquid–Liquid Equilibria for Benzylamine + CH3(CH2)nCH3 (n = 8, 9, 10, 12, 14)

    Get PDF
    Coexistence curves for the liquid−liquid equilibria (LLE) of 1-phenylmethanamine (benzylamine) + CH3(CH2)nCH3 (n = 8, 9, 10, 12, 14) have been determined using the critical opalescence method by means of a laser scattering technique. All of the LLE curves show an upper critical solution temperature (UCST), which increases with increasing n. For systems including a given n-alkane, the UCST decreases in the sequence aniline > 2-methylaniline (o-toluidine) > benzylamine > N-methylaniline > pyridine. This means that amine−amine interactions become weaker in the same order. Most of the DISQUAC interaction parameters for the aliphatic/amine (a,n) and aromatic/ amine (b,n) contacts previously determined for solutions with aniline, o-toluidine, or N-methylaniline have been used for the representation of the LLE data. Only the first dispersive interaction parameter of the (a,n) contact has been modified. The coordinates of the critical points are correctly represented by the model

    Ralstonia solanacearum lipopeptide induces chlamydospore development in fungi and facilitates bacterial entry into fungal tissues

    No full text
    Ralstonia solanacearum is a globally distributed soil-borne plant pathogenic bacterium, which shares a broad ecological range with many plant- and soil-associated fungi. We sought to determine if R. solanacearum chemical communication directs symbiotic development of polymicrobial consortia. R. solanacearum produced a diffusible metabolite that induced conserved morphological differentiation in 34 species of fungi across three diverse taxa (Ascomycetes, Basidiomycetes and Zygomycetes). Fungi exposed to this metabolite formed chlamydospores, survival structures with thickened cell walls. Some chlamydospores internally harbored R. solanacearum, indicating a newly described endofungal lifestyle for this important plant pathogen. Using imaging mass spectrometry and peptidogenomics, we identified an undescribed lipopeptide, ralsolamycin, produced by an R. solanacearum non-ribosomal peptide synthetase-polyketide synthase hybrid. Inactivation of the hybrid non-ribosomal peptide synthetase-polyketide synthase gene, rmyA, abolished ralsolamycin synthesis. R. solanacearum mutants lacking ralsolamycin no longer induced chlamydospore development in fungal coculture and invaded fungal hyphae less well than wild-type. We propose that ralsolamycin contributes to the invasion of fungal hyphae and that the formation of chlamydospores may provide not only a specific niche for bacterial colonization but also enhanced survival for the partnering fungus
    corecore