6,906 research outputs found
Pressure limiting propellant actuating system
A pressure limiting propellant activating system for simultaneously limiting the output force while maintaining a constant output pressure from the combustion chamber is described. The propellant actuated system includes an outer barrel, outer housing and a combustion chamber. A main piston is movable in the barrel housing when gas pressure is developed in the combustion chamber. A relief piston is concentrically mounted and fixedly movable with the main piston when gas pressure is exerted from the combustion. A relief piston has a force-activated separation mechanism for limiting the output force while simultaneously maintaining constant output pressure on the main piston from the combustion chamber
Insect (Arthropoda: Insecta) Composition in the Diet of Ornate Box Turtles (Terrapene ornata ornata) in Two Western Illinois Sand Prairies, with a New State Record for Cyclocephala (Coleoptera: Scarabaeidae)
A study of fecal samples collected over a two-year period from juvenile ornate box turtles (Terrapene ornata ornata Agassiz) revealed diets consisting of six orders of insects representing 19 families. Turtles were reared in captivity from eggs harvested from local, wild populations, and released at two remnant prairies. Identifiable insect fragments were found in 94% of samples in 2013 (n=33) and 96% in 2014 (n=25). Frequency of occurrence of insects in turtle feces is similar to results reported in previous studies of midwestern Terrapene species. A comparison of insect composition presented no significant difference between release sites. There is no significant difference in consumed insect species between turtles released into or outside of a fenced enclosure at the same site. Specimens of Cyclocephala longula LeConte collected during this study represent a new state record for Illinois
Efficient fe strategies for springback prediction – material modelling and computational aspects
Blanks of sheet metal are characterized by an intrinsic plastic anisotropic behaviour resulting from the plastic deformation during the rolling of sheets. Another type of anisotropy is elastic anisotropy which might be essential especially during elastic recovery processes during unloading after forming and springback. Thus, this paper focuses on the study of the sensitivity of the amount of springback in unconstrained bending with respect to elastic anisotropy. A finite strain constitutive model for evolving elastic and plastic anisotropy combining nonlinear isotropic and kinematic hardening is discussed. The evolution of elastic anisotropy is described by representing the Helmholtz free energy as a function of a family of evolving structure tensors. In addition, plastic anisotropy is modelled via the dependence of the yield surface on the same family of structure tensors. The constitutive equations of the model are implemented as a user material subroutine UMAT in the commercial solver ABAQUS/Standard, which is then applied to the simulation of springback in unconstrained bending
Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces.
Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces
Simulations of isolated dwarf galaxies formed in dark matter halos with different mass assembly histories
We present high-resolution N-body/hydrodynamics simulations of dwarf galaxies
formed in isolated CDM halos with the same virial mass, Mv~2.5x10^10 Msun at
z=0, in order to (1) study the mass assembly histories (MAHs) of the halo,
stars, and gas components, and (2) explore the effects of the halo MAHs on the
stellar/baryonic assembly of the simulated dwarfs and on their z~0 properties.
Overall, the simulated dwarfs are roughly consistent with observations. Our
main results are: a) The stellar-to-halo mass ratio is ~0.01 and remains
roughly constant since z~1 (the stellar MAHs follow closely the halo MAHs),
with a smaller value at higher z's for those halos that assemble their mass
later. b) The evolution of the galaxy gas fraction, fg, is episodic and higher,
most of the time, than the stellar fraction. When fg decreases (increases), the
gas fraction in the halo typically increases (decreases), showing that the SN
driven outflows play an important role in regulating the gas fractions -and
hence the SFR- of the dwarfs. However, in most cases, an important fraction of
the gas escapes the virial radius, Rv; at z=4 the total baryon fraction inside
Rv is 1.5-2 times smaller than the universal one, while at z=0 is 2-6 times
smaller, with the earlier assembled halos ejecting more gas. c) The SF
histories are episodic with changes in the SFRs of factors 2-10 on average. d)
Although the dwarfs formed in late assembled halos show more extended SF
histories, their z~0 SFRs are still below the ones measured for local isolated
dwarfs. e) The effects of baryons on Mv are such that at almost any time Mv is
10-20% smaller than the corresponding Mv obtained in pure N-body simulations.
Our results suggest that rather than increasing the strength of the SN-driven
outflows, processes that reduce the SF efficiency even more will help to solve
the potential issues faced by the CDM-based simulations of dwarfs.Comment: 14 pages, 12 figures. ApJ, published. Minor changes after final
Referee's repor
Self-trapping at the liquid vapor critical point
Experiments suggest that localization via self-trapping plays a central role
in the behavior of equilibrated low mass particles in both liquids and in
supercritical fluids. In the latter case, the behavior is dominated by the
liquid-vapor critical point which is difficult to probe, both experimentally
and theoretically. Here, for the first time, we present the results of
path-integral computations of the characteristics of a self-trapped particle at
the critical point of a Lennard-Jones fluid for a positive particle-atom
scattering length. We investigate the influence of the range of the
particle-atom interaction on trapping properties, and the pick-off decay rate
for the case where the particle is ortho-positronium.Comment: 12 pages, 3 figures, revtex4 preprin
Are the stars of a new class of variability detected in NGC~3766 fast rotating SPB stars?
A recent photometric survey in the NGC~3766 cluster led to the detection of
stars presenting an unexpected variability. They lie in a region of the
Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected,
in between the Scuti and slowly pulsating B (SPB) star instability
domains. Their variability periods, between 0.1--0.7~d, are outside the
expected domains of these well-known pulsators. The NCG~3766 cluster is known
to host fast rotating stars. Rotation can significantly affect the pulsation
properties of stars and alter their apparent luminosity through gravity
darkening. Therefore we inspect if the new variable stars could correspond to
fast rotating SPB stars. We carry out instability and visibility analysis of
SPB pulsation modes within the frame of the traditional approximation. The
effects of gravity darkening on typical SPB models are next studied. We find
that at the red border of the SPB instability strip, prograde sectoral (PS)
modes are preferentially excited, with periods shifted in the 0.2--0.5~d range
due to the Coriolis effect. These modes are best seen when the star is seen
equator-on. For such inclinations, low-mass SPB models can appear fainter due
to gravity darkening and as if they were located between the ~Scuti and
SPB instability strips.Comment: 6 pages, 2 figures, to appear in the proceedings of the IAU Symposium
307, New windows on massive stars: asteroseismology, interferometry, and
spectropolarimetr
- …
