16 research outputs found
Tropheryma whipplei : a common bacterium in rural Senegal
Background: Tropheryma whipplei is known as the cause of Whipple's disease, but it is also an emerging pathogen, detected in stool, that causes various chronic localized infections without histological digestive involvement and is associated with acute infections, including gastroenteritis and bacteremia. Methods/Principal Findings: We conducted a study in 2008 and 2009 using 497 non-diarrheic and diarrheic stool samples, 370 saliva samples, 454 sera samples and 105 samples obtained from water samples in two rural Sine-Saloum villages (Dielmo and Ndiop) in Senegal. The presence of T. whipplei was investigated by using specific quantitative PCR. Genotyping was performed on positive samples. A serological analysis by western blotting was performed to determine the seroprevalence and to detect seroconversion. Overall, T. whipplei was identified in 31.2% of the stool samples (139/446) and 3.5% of the saliva samples (13/370) obtained from healthy subjects. The carriage in the stool specimens was significantly (p<10(-3)) higher in children who were between 0 and 4 years old (60/80, 75%) compared to samples obtained from individuals who were between 5 to 10 years old (36/119, 30.2%) or between 11 and 99 years old (43/247, 17.4%). The carriage in the stool was also significantly more common (p = 0.015) in subjects with diarrhea (25/51, 49%). We identified 22 genotypes, 16 of which were new. Only one genotype (#53) was common to both villages. Among the specific genotypes, one (#52) was epidemic in Dielmo (15/28, 53.4%, p<10(-3)) and another (#49) in Ndiop (27.6%, p = 0.002). The overall seroprevalence was estimated at 72.8% (291/400). Seroconversion was detected in 66.7% (18/27) of children for whom PCR became positive in stools between 2008 and 2009. Conclusions/Significance: T. whipplei is a common bacterium in the Sine-Saloum area of rural Senegal that is contracted early in childhood. Epidemic genotypes suggest a human transmission of the bacterium
The detection of vector-borne-disease-related DNA in human stool paves the way to large epidemiological studies
The detection of Plasmodium spp. by the molecular analysis of human feces was reported to be comparable to detection in the blood. We believe that for epidemiological studies using molecular tools, it would be simpler to use feces, which are easier to obtain and require no training for their collection. Our aim was to evaluate the usefulness of feces for the detection of these pathogens towards developing a new tool for their surveillance. Between 2008 and 2010, 451 human fecal samples were collected in two Senegalese villages in which malaria and rickettsioses are endemic. Rickettsia and Plasmodium DNA were detected using quantitative PCR targeting Rickettsia of the spotted fever group, R. felis and Plasmodium spp. Two different sequences were systematically targeted for each pathogen. Twenty of the 451 fecal samples (4.4 %) were positive for Rickettsia spp., including 8 for R. felis. Inhabitants of Dielmo were more affected (18/230, 7.8 %; p = 0.0008) compared to those of Ndiop (2/221, 0.9 %). Children under 15 years of age were more often positive (19/285, 6.7 %) than were older children (1/166, 0.6 %; p = 0.005, odds ratio = 11.79). Only one sample was positive for Plasmodium spp. This prevalence is similar to that found in the blood of the Senegalese population reported previously. This preliminary report provides a proof of concept for the use of feces for detecting human pathogens, including microorganisms that do not cause gastroenteritis, in epidemiological studies
Tropheryma whipplei : a common bacterium in rural Senegal
Background: Tropheryma whipplei is known as the cause of Whipple's disease, but it is also an emerging pathogen, detected in stool, that causes various chronic localized infections without histological digestive involvement and is associated with acute infections, including gastroenteritis and bacteremia. Methods/Principal Findings: We conducted a study in 2008 and 2009 using 497 non-diarrheic and diarrheic stool samples, 370 saliva samples, 454 sera samples and 105 samples obtained from water samples in two rural Sine-Saloum villages (Dielmo and Ndiop) in Senegal. The presence of T. whipplei was investigated by using specific quantitative PCR. Genotyping was performed on positive samples. A serological analysis by western blotting was performed to determine the seroprevalence and to detect seroconversion. Overall, T. whipplei was identified in 31.2% of the stool samples (139/446) and 3.5% of the saliva samples (13/370) obtained from healthy subjects. The carriage in the stool specimens was significantly (p<10(-3)) higher in children who were between 0 and 4 years old (60/80, 75%) compared to samples obtained from individuals who were between 5 to 10 years old (36/119, 30.2%) or between 11 and 99 years old (43/247, 17.4%). The carriage in the stool was also significantly more common (p = 0.015) in subjects with diarrhea (25/51, 49%). We identified 22 genotypes, 16 of which were new. Only one genotype (#53) was common to both villages. Among the specific genotypes, one (#52) was epidemic in Dielmo (15/28, 53.4%, p<10(-3)) and another (#49) in Ndiop (27.6%, p = 0.002). The overall seroprevalence was estimated at 72.8% (291/400). Seroconversion was detected in 66.7% (18/27) of children for whom PCR became positive in stools between 2008 and 2009. Conclusions/Significance: T. whipplei is a common bacterium in the Sine-Saloum area of rural Senegal that is contracted early in childhood. Epidemic genotypes suggest a human transmission of the bacterium
Common epidemiology of Rickettsia felis infection and malaria, Africa
This study aimed to compare the epidemiology of Rickettsia felis infection and malaria in France, North Africa, and sub-Saharan Africa and to identify a common vector. Blood specimens from 3,122 febrile patients and from 500 nonfebrile persons were analyzed for R. felis and Plasmodium spp. We observed a significant linear trend (p<0.0001) of increasing risk for R. felis infection. The risks were lowest in France, Tunisia, and Algeria (1%), and highest in rural Senegal (15%). Co-infections with R. felis and Plasmodium spp. and occurrences of R. felis relapses or reinfections were identified. This study demonstrates a correlation between malaria and R. felis infection regarding geographic distribution, seasonality, asymptomatic infections, and a potential vector. R. felis infection should be suspected in these geographical areas where malaria is endemic. Doxycycline chemoprophylaxis against malaria in travelers to sub-Saharan Africa also protects against rickettsioses; thus, empirical treatment strategies for febrile illness for travelers and residents in sub-Saharan Africa may require reevaluation
Implementation of Syndromic Surveillance Systems in Two Rural Villages ă in Senegal
International audienceInfectious diseases still represent a major challenge for humanity. In this context, their surveillance is critical. From 2010 to 2016, two Point-Of-Care (POC) laboratories have been successfully implemented in the rural Saloum region of Senegal. In parallel, a homemade syndromic surveillance system called EPIMIC was implemented to monitor infectious diseases using data produced by the POC laboratory of the Timone hospital in Marseille, France. The aim of this study is to describe the steps necessary for implementing EPIMIC using data routinely produced by two POC laboratories (POC-L) established in rural Senegal villages. After improving EPIMIC, we started to monitor the 15 pathogens routinely diagnosed in the two POC-L using the same methodology we used in France. In 5 years, 2,577 deduplicated patients-samples couples from 775 different patients have been tested in the Dielmo and Ndiop POC-L. 739 deduplicated patients-samples couples were found to be positive to at least one of the tested pathogens. The retrospective analysis of the Dielmo and Ndiop POC data with EPIMIC allowed to generate 443 alarms. Since January 2016, 316 deduplicated patients-samples couples collected from 298 different patients were processed in the Niakhar POC laboratory. 56 deduplicated patients-samples couples were found to be positive to at least one of the tested pathogens. The retrospective analysis of the data of the Niakhar POC laboratory with EPIMIC allowed to generate 14 alarms. Although some improvements are still needed, EPIMIC has been successfully spread using data routinely produced by two rural POC-L in Senegal, West Africa