2,507 research outputs found

    Fancy You Fancying Me!

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/1421/thumbnail.jp

    Orthorexia nervosa: A cross-sectional study among athletes competing in endurance sports in Northern Italy

    Get PDF
    Orthorexia Nervosa (ON) is an eating disorder marked by an excessive control over the quality of the food eaten. Some groups present a higher prevalence of ON and people practicing sports seems to be a population at risk. The aim of this study is to assess the prevalence of ON in endurance athletes and to compare their prevalence with the ones recorded in the sedentary population and in athletes playing other sports. A cross-sectional survey was carried in Piedmont and Valle d'Aosta, among 549 participants in local sports events aged between 18 and 40 years old. The questionnaire assessed socio-demographic characteristics, physical activity, nutrition and diet, the ORTO-15 questionnaire and Eating Habits Questionnaire (EHQ). The sample was stratified according to the minutes of sport practiced in a week and the type of sport played. Crosstab chi-square analyses to determine group differences on categorical variables (e.g. gender), and ANOVAs or t tests to determine group differences on continuous variables were performed. When required, post hoc analyses were performed. Linear and logistic regressions were performed in order to investigate potential predictors of orthorexia. The EHQ mean scores ware significantly higher in people who practice sports >150 minutes/week. EHQ score resulted to be positively correlated with endurance sport practice >150 minutes/week, with a coefficient of 2.407 (I.C.95% [0.27;4.54], p = 0.027). Analyses carried out suggested a correlation between endurance sport practice and ON. Further studies should be performed to identify diagnostic criteria and to compare different questionnaire used to assess them

    Dzyaloshinsky-Moriya Anisotropy in the Spin-1/2 Kagom\'e Compound ZnCu3_{3}(OH)6_{6}Cl2_{2}

    Get PDF
    We report the determination of the Dzyaloshinsky-Moriya interaction, the dominant magnetic anisotropy term in the \kagome spin-1/2 compound {\herbert}. Based on the analysis of the high-temperature electron spin resonance (ESR) spectra, we find its main component ∣Dz∣=15(1)|D_z|=15(1) K to be perpendicular to the \kagome planes. Through the temperature dependent ESR line-width we observe a building up of nearest-neighbor spin-spin correlations below ∼\sim150 K.Comment: 4 pages, 3 figures, minor modification

    Magnetic ground state and spin fluctuations in MnGe chiral magnet as studied by Muon Spin Rotation

    Get PDF
    We have studied by muon spin resonance ({\mu}SR) the helical ground state and fluctuating chiral phase recently observed in the MnGe chiral magnet. At low temperature, the muon polarization shows double period oscillations at short time scales. Their analysis, akin to that recently developed for MnSi [A. Amato et al., Phys. Rev. B 89, 184425 (2014)], provides an estimation of the field distribution induced by the Mn helical order at the muon site. The refined muon position agrees nicely with ab initio calculations. With increasing temperature, an inhomogeneous fluctuating chiral phase sets in, characterized by two well separated frequency ranges which coexist in the sample. Rapid and slow fluctuations, respectively associated with short range and long range ordered helices, coexist in a large temperature range below TN_{N} = 170 K. We discuss the results with respect to MnSi, taking the short helical period, metastable quenched state and peculiar band structure of MnGe into account.Comment: 13 pages, 11 figure

    Non-Abelian Giant Gravitons

    Get PDF
    We argue that the giant graviton configurations known from the literature have a complementary, microscopical description in terms of multiple gravitational waves undergoing a dielectric (or magnetic moment) effect. We present a non-Abelian effective action for these gravitational waves with dielectric couplings and show that stable dielectric solutions exist. These solutions agree in the large NN limit with the giant graviton configurations in the literature.Comment: 8 pages. Contribution to the proceedings of the RTN workshop in Leuven, Belgium, September 200

    Spin dynamics and disorder effects in the S=1/2 kagome Heisenberg spin liquid phase of kapellasite

    Full text link
    We report 35^{35}Cl NMR, ESR, μ\muSR and specific heat measurements on the S=1/2S=1/2 frustrated kagom\'e magnet kapellasite, α−\alpha-Cu3_3Zn(OH)6_6Cl2_2, where a gapless spin liquid phase is stabilized by a set of competing exchange interactions. Our measurements confirm the ferromagnetic character of the nearest-neighbour exchange interaction J1J_1 and give an energy scale for the competing interactions ∣J∣∼10|J| \sim 10 K. The study of the temperature-dependent ESR lineshift reveals a moderate symmetric exchange anisotropy term DD, with ∣D/J∣∼3|D/J|\sim 3%. These findings validate a posteriori the use of the J1−J2−JdJ_1 - J_2 - J_d Heisenberg model to describe the magnetic properties of kapellasite [Bernu et al., Phys. Rev. B 87, 155107 (2013)]. We further confirm that the main deviation from this model is the severe random depletion of the magnetic kagom\'e lattice by 27%, due to Cu/Zn site mixing, and specifically address the effect of this disorder by 35^{35}Cl NMR, performed on an oriented polycrystalline sample. Surprisingly, while being very sensitive to local structural deformations, our NMR measurements demonstrate that the system remains homogeneous with a unique spin susceptibility at high temperature, despite a variety of magnetic environments. Unconventional spin dynamics is further revealed by NMR and μ\muSR in the low-TT, correlated, spin liquid regime, where a broad distribution of spin-lattice relaxation times is observed. We ascribe this to the presence of local low-energy modes.Comment: 15 pages, 11 figures. To appear in Phys. Rev.
    • …
    corecore