12 research outputs found
Aerosol Microdroplets Exhibit a Stable pH Gradient
Suspended aqueous aerosol droplets (\u3c50 μm) are microreactors for many important atmospheric reactions. In droplets and other aquatic environments, pH is arguably the key parameter dictating chemical and biological processes. The nature of the droplet air/ water interface has the potential to significantly alter droplet pH relative to bulk water. Historically, it has been challenging to measure the pH of individual droplets because of their inaccessibility to conventional pH probes. In this study, we scanned droplets containing 4-mercaptobenzoic acid–functionalized gold nanoparticle pH nanoprobes by 2D and 3D laser confocal Raman microscopy. Using surface-enhanced Raman scattering, we acquired the pH distribution inside approximately 20-μm-diameter phosphate-buffered aerosol droplets and found that the pH in the core of a droplet is higher than that of bulk solution by up to 3.6 pH units. This finding suggests the accumulation of protons at the air/water interface and is consistent with recent thermodynamic model results. The existence of this pH shift was corroborated by the observation that a catalytic reaction that occurs only under basic conditions (i.e., dimerization of 4-aminothiophenol to produce dimercaptoazobenzene) occurs within the high pH core of a droplet, but not in bulk solution. Our nanoparticle probe enables pH quantification through the cross-section of an aerosol droplet, revealing a spatial gradient that has implications for acid-base–catalyzed atmospheric chemistry
TNF-α induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells
The molecular pathogenesis of the myeloid leukemias that frequently occur in patients with Fanconi anemia (FA) is not well defined. Hematopoietic stem cells bearing inactivating mutations of FA complementation group C (FANCC) are genetically unstable and hypersensitive to apoptotic cytokine cues including IFN-γ and TNF-α, but neoplastic stem cell clones that arise frequently in vivo are resistant to these cytokines. Reasoning that the combination of genetic instability and cytokine hypersensitivity might create an environment supporting the emergence of leukemic stem cells, we tested the leukemia-promoting effects of TNF-α in murine stem cells. TNF-α exposure initially profoundly inhibited the growth of Fancc–/– stem cells. However, longer-term exposure of these cells promoted the outgrowth of cytogenetically abnormal clones that, upon transplantation into congenic WT mice, led to acute myelogenous leukemia. TNF-α induced ROS-dependent genetic instability in Fancc–/– but not in WT cells. The leukemic clones were TNF-α resistant but retained their characteristic hypersensitivity to mitomycin C and exhibited high levels of chromosomal instability. Expression of FANCC cDNA in Fancc–/– stem cells protected them from TNF-α–induced clonal evolution. We conclude that TNF-α exposure creates an environment in which somatically mutated preleukemic stem cell clones are selected and from which unaltered TNF-α–hypersensitive Fancc–/– stem cells are purged