321 research outputs found

    The search for continuous gravitational waves: metric of the multi-detector F-statistic

    Get PDF
    We develop a general formalism for the parameter-space metric of the multi-detector F-statistic, which is a matched-filtering detection statistic for continuous gravitational waves. We find that there exists a whole family of F-statistic metrics, parametrized by the (unknown) amplitude parameters of the gravitational wave. The multi-detector metric is shown to be expressible in terms of noise-weighted averages of single-detector contributions, which implies that the number of templates required to cover the parameter space does not scale with the number of detectors. Contrary to using a longer observation time, combining detectors of similar sensitivity is therefore the computationally cheapest way to improve the sensitivity of coherent wide-parameter searches for continuous gravitational waves. We explicitly compute the F-statistic metric family for signals from isolated spinning neutron stars, and we numerically evaluate the quality of different metric approximations in a Monte-Carlo study. The metric predictions are tested against the measured mismatches and we identify regimes in which the local metric is no longer a good description of the parameter-space structure.Comment: 20 pages, 15 figures, revtex4; v2: some edits of style and notation, fixed minor typo

    Improved all-sky search method for continuous gravitational waves from unknown neutron stars in binary systems

    Get PDF
    Continuous gravitational waves from spinning deformed neutron stars have not been detected yet, and are one of the most promising signals for future detection. All-sky searches for continuous gravitational waves from unknown neutron stars in binary systems are the most computationally challenging search type. Consequently, very few search algorithms and implementations exist for these sources, and only a handful of such searches have been performed so far. In this paper, we present a new all-sky binary search method, BinarySkyHouF\mathcal{F}, which extends and improves upon the earlier BinarySkyHough method, and which was the basis for a recent search (Covas et al. [1]). We compare the sensitivity and computational cost to previous methods, showing that it is both more sensitive and computationally efficient, which allows for broader and more sensitive searches. <br

    Improved short-segment detection statistic for continuous gravitational waves

    Get PDF
    Continuous gravitational waves represent one of the long-sought types of signals that have yet to be detected. Due to their small amplitude, long observational datasets (months-years) have to be analyzed together, thereby vastly increasing the computational cost of these searches. All-sky searches face the most severe computational obstacles, especially searches for sources in unknown binary systems, which need to break the data into very short segments in order to be computationally feasible. In this paper, we present a new detection statistic that improves sensitivity by up to 19% compared to the standard F\mathcal{F}-statistic for segments shorter than a few hours

    Constraints on r-modes and mountains on millisecond neutron stars in binary systems

    Get PDF
    Continuous gravitational waves are nearly monochromatic signals emitted by asymmetries in rotating neutron stars. These signals have not yet been detected. Deep all-sky searches for continuous gravitational waves from isolated neutron stars require significant computational expense. Deep searches for neutron stars in binary systems are even more expensive, but potentially these targets are more promising emitters, especially in the hundreds-Hz region, where ground-based gravitational wave detectors are most sensitive. We present here an all-sky search for continuous signals with frequency between 300 and 500 Hz, from neutron stars in binary systems with orbital period between 15 and 60 days, and projected semi-major axis between 10 and 40 light-seconds. This is the only binary search on Advanced-LIGO data that probes this frequency range. Compared to previous results, our search is over an order of magnitude more sensitive. We do not detect any signals, but our results exclude plausible and unexplored neutron star configurations, for example, neutron stars with relative deformations greater than 3e-6 within 1 kpc from Earth and r-mode emission at the level of alpha ~ few 1e-4 within the same distance.Comment: Accepted for publication in The Astrophysical Journal Letter

    Building a stochastic template bank for detecting massive black hole binaries

    Full text link
    Coalescence of two massive black holes is the strongest and most promising source for LISA. In fact, gravitational signal from the end of inspiral and merger will be detectable throughout the Universe. In this article we describe the first step in the two-step hierarchical search for gravitational wave signal from the inspiraling massive BH binaries. It is based on the routinely used in the ground base gravitational wave astronomy method of filtering the data through the bank of templates. However we use a novel Monte-Carlo based (stochastic) method to lay a grid in the parameter space, and we use the likelihood maximized analytically over some parameters, known as F-statistic, as a detection statistic. We build a coarse template bank to detect gravitational wave signals and to make preliminary parameter estimation. The best candidates will be followed up using Metropolis-Hasting stochastic search to refine the parameter estimation. We demonstrate the performance of the method by applying it to the Mock LISA data challenge 1B (training data set).Comment: revtex4, 8 figure

    Non-equilibrium beta processes in superfluid neutron star cores

    Full text link
    The influence of nucleons superfluidity on the beta relaxation time of degenerate neutron star cores, composed of neutrons, protons and electrons, is investigated. We numerically calculate the implied reduction factors for both direct and modified Urca reactions, with isotropic pairing of protons or anisotropic pairing of neutrons. We find that due to the non-zero value of the temperature and/or to the vanishing of anisotropic gaps in some directions of the phase-space, superfluidity does not always completely inhibit beta relaxation, allowing for some reactions if the superfluid gap amplitude is not too large in respect to both the typical thermal energy and the chemical potential mismatch. We even observe that if the ratio between the critical temperature and the actual temperature is very small, a suprathermal regime is reached for which superfluidity is almost irrelevant. On the contrary, if the gap is large enough, the composition of the nuclear matter can stay frozen for very long durations, unless the departure from beta equilibrium is at least as important as the gap amplitude. These results are crucial for precise estimation of the superfluidity effect on the cooling/slowing-down of pulsars and we provide online subroutines to be implemented in codes for simulating such evolutions.Comment: 11 pages, 6 Figs., published, minor changes, subroutines can be found on line at http://luth2.obspm.fr/~etu/villain/Micro/Resolution.htm

    Gravitational wave background from rotating neutron stars

    Full text link
    The background of gravitational waves produced by the ensemble of rotating neutron stars (which includes pulsars, magnetars and gravitars) is investigated. A formula for \Omega(f) (commonly used to quantify the background) is derived, properly taking into account the time evolution of the systems since their formation until the present day. Moreover, the formula allows one to distinguish the different parts of the background: the unresolvable (which forms a stochastic background) and the resolvable. Several estimations of the background are obtained, for different assumptions on the parameters that characterize neutron stars and their population. In particular, different initial spin period distributions lead to very different results. For one of the models, with slow initial spins, the detection of the background can be rejected. However, other models do predict the detection of the background by the future ground-based gravitational wave detector ET. A robust upper limit for the background of rotating neutron stars is obtained; it does not exceed the detection threshold of two cross-correlated Advanced LIGO interferometers. If gravitars exist and constitute more than a few percent of the neutron star population, then they produce an unresolvable background that could be detected by ET. Under the most reasonable assumptions on the parameters characterizing a neutron star, the background is too faint. Previous papers have suggested neutron star models in which large magnetic fields (like the ones that characterize magnetars) induce big deformations in the star, which produce a stronger emission of gravitational radiation. Considering the most optimistic (in terms of the detection of gravitational waves) of these models, an upper limit for the background produced by magnetars is obtained; it could be detected by ET, but not by BBO or DECIGO.Comment: 25 pages, 15 figure

    Vortex in a weakly relativistic Bose gas at zero temperature and relativistic fluid approximation

    Full text link
    The Bogoliubov procedure in quantum field theory is used to describe a relativistic almost ideal Bose gas at zero temperature. Special attention is given to the study of a vortex. The radius of the vortex in the field description is compared to that obtained in the relativistic fluid approximation. The Kelvin waves are studied and, for long wavelengths, the dispersion relation is obtained by an asymptotic matching method and compared with the non relativistic result.Comment: 20 page

    Studying stellar binary systems with the Laser Interferometer Space Antenna using Delayed Rejection Markov chain Monte Carlo methods

    Full text link
    Bayesian analysis of LISA data sets based on Markov chain Monte Carlo methods has been shown to be a challenging problem, in part due to the complicated structure of the likelihood function consisting of several isolated local maxima that dramatically reduces the efficiency of the sampling techniques. Here we introduce a new fully Markovian algorithm, a Delayed Rejection Metropolis-Hastings Markov chain Monte Carlo method, to efficiently explore these kind of structures and we demonstrate its performance on selected LISA data sets containing a known number of stellar-mass binary signals embedded in Gaussian stationary noise.Comment: 12 pages, 4 figures, accepted in CQG (GWDAW-13 proceedings

    A hierarchical search for gravitational waves from supermassive black hole binary mergers

    Full text link
    We present a method to search for gravitational waves from coalescing supermassive binary black holes in LISA data. The search utilizes the F\mathcal{F}-statistic to maximize over, and determine the values of, the extrinsic parameters of the binary system. The intrinsic parameters are searched over hierarchically using stochastically generated multi-dimensional template banks to recover the masses and sky locations of the binary. We present the results of this method applied to the mock LISA data Challenge 1B data set.Comment: 11 pages, 2 figures, for GWDAW-12 proceedings edition of CQ
    • …
    corecore