111 research outputs found

    Laser-induced transient currents in CdZnTe quasi-hemispherical radiation detector

    Get PDF
    Laser-induced transient currents were measured after applying pulsed or direct-current bias to a CdZnTe quasi-hemispherical radiation detector with gold contacts. The temporal evolution of current transients was analyzed to evaluate the dynamics of the space charge formation and its spatial distribution. The observed effects were explained by a model involving hole injection from positively biased contacts. Experimental results were complemented by numerical simulations, which supported the model. This paper discusses how the detected phenomena affect the detector performance and proposes an improved detector design

    Safety and Tolerability of Manual Push Administration of Subcutaneous IgPro20 at High Infusion Rates in Patients with Primary Immunodeficiency: Findings from the Manual Push Administration Cohort of the HILO Study

    Get PDF
    © 2020, The Author(s). Purpose: To evaluate the safety and tolerability of IgPro20 manual push (also known as rapid push) infusions at flow rates of 0.5–2.0 mL/min. Methods: Patients with primary immunodeficiency (PID) with previous experience administering IgPro20 (Hizentra®, CSL Behring, King of Prussia, PA, USA) were enrolled in the Hizentra® Label Optimization (HILO) study (NCT03033745) and assigned to Pump-assisted Volume Cohort, Pump-assisted Flow Rate Cohort, or Manual Push Flow Rate Cohort; this report describes the latter. Patients administered IgPro20 via manual push at 0.5, 1.0, and 2.0 mL/min/site for 4 weeks each. Responder rates (percentage of patients who completed a predefined minimum number of infusions), safety outcomes, and serum immunoglobulin G (IgG) trough levels were evaluated. Results: Sixteen patients were treated; 2 patients (12.5%) discontinued at the 1.0-mL/min level (unrelated to treatment). Responder rates were 100%, 100%, and 87.5% at 0.5-, 1.0-, and 2.0-mL/min flow rates, respectively. Mean weekly infusion duration decreased from 103–108 to 23–28 min at the 0.5- and 2.0-mL/min flow rates, respectively. Rates of treatment-related treatment-emergent adverse events (TEAEs) per infusion were 0.023, 0.082, and 0.025 for the 0.5-, 1.0-, and 2.0-mL/min flow rates, respectively. Most TEAEs were mild local reactions and tolerability (infusions without severe local reactions/total infusions) was 100% across flow rate levels. Serum IgG levels (mean [SD]) were similar at study start (9.36 [2.53] g/L) and end (9.58 [2.12] g/L). Conclusions: Subcutaneous IgPro20 manual push infusions at flow rates up to 2.0 mL/min were well tolerated and reduced infusion time in treatment-experienced patients with PID. Trial Registration: NCT03033745

    Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota

    Get PDF
    The microbiome is essential for development, health and homeostasis throughout an animal's life. Yet, the origins and transmission processes governing animal microbiomes remain elusive for non-human vertebrates, oviparous vertebrates in particular. Eggs may function as transgenerational carriers of the maternal microbiome, warranting characterisation of egg microbiome assembly. Here, we investigated maternal and environmental contributions to avian eggshell microbiota in wild passerine birds: woodlark Lullula arborea and skylark Alauda arvensis. Using 16S rRNA gene sequencing, we demonstrated in both lark species, at the population and within-nest levels, that bacterial communities of freshly laid eggs were distinct from the female cloacal microbiome. Instead, soil-borne bacteria appeared to thrive on freshly laid eggs, and eggshell microbiota composition strongly resembled maternal skin, body feather and nest material communities, sources in direct contact with laid eggs. Finally, phylogenetic structure analysis and microbial source tracking underscored species sorting from directly contacting sources rather than in vivo-transferred symbionts. The female-egg-nest system allowed an integrative assessment of avian egg microbiome assembly, revealing mixed modes of symbiont acquisition not previously documented for vertebrate eggs. Our findings illuminated egg microbiome origins, which suggested a limited potential of eggshells for transgenerational transmission, encouraging further investigation of eggshell microbiome functions in vertebrates

    STEAP2 Knockdown Reduces the Invasive Potential of Prostate Cancer Cells

    Get PDF
    Six-transmembrane epithelial antigen of the prostate-2 (STEAP2) expression is increased in prostate cancer when compared to normal prostate, suggesting STEAP2 may drive prostate cancer progression. This study aimed to establish the functional role of STEAP2 in prostate tumourigenesis and evaluate if its knockdown resulted in reduced invasive potential of prostate cancer cells. PC3 and LNCaP cells were transfected with STEAP2 siRNA and proliferation, migration, invasion and gene expression analyses were performed. STEAP2 immunohistochemistry was applied to assess the protein expression and localisation according to Gleason score in 164 prostate cancer patients. Invasion significantly decreased in both cell lines following STEAP2 knockdown. PC3 proliferation and migration capacity significantly reduced, while LNCaP cell morphology and growth characteristics were altered. Additionally, STEAP2 downstream targets associated with driving invasion were identified as MMP3, MMP10, MMP13, FGFR4, IL1β, KiSS1 and SERPINE1 in PC3 cells and, MMP7 in LNCaP cells, with CD82 altered in both. In patient tissues, STEAP2 expression was significantly increased in prostate cancer samples and this significantly correlated with Gleason score. These data demonstrate that STEAP2 drives aggressive prostate cancer traits by promoting proliferation, migration and invasion and significantly influencing the transcriptional profile of ten genes underlying the metastatic cascade

    Photocatalytic activity of ZnxCd.sub.1-x./sub.S quantum dots in dependence on their composition

    No full text
    ZnxCd1-xS quantum dots (QDs) with the different composition x were prepared by precipitation of Zn and Cd acetates with sodium sulphide from aqueous colloid dispersions. Transition energies of these QDs were determined from UV-VIS spectra of the QDs colloid dispersions and consequently used for calculation of the QDs sizes according to the Schrödinger equation. The ZnCdS QDs size was found to be significantly influenced by their composition, decreased with increasing the Zn content. The QDs were also characterized by TEM, X-ray powder diffraction and PL. The photocatalytic activity of the QDs was studied using the methylene blue decomposition under UV irradiation with the maximum intensity of 365 nm. Different photocatalytic activity depending on the composition x was observed. Quantum levels of the QDs have important influence on their photocatalytic activity as a result of quantum size effect. The maximal photocatalytic activity was achieved for x=0.6

    Study of photocatalytic activity of Zn.sub.x./sub.Cd.sub.1-x./sub.S quantum dots in dependence on their composition using methylene blue

    No full text
    ZnCdS quantum dots (QDs) with the different composition were prepared by precipitation of zinc and cadmium acetates with sodium sulphide in the presence of cetyltrimethylammonium bromide (CTAB) used for stabilization of their aqueous colloid dispersions. Transition energies of these quantum dots were determined from the UV-VIS spectra of QDs colloid dispersions and consequently used for calculation of the QDs sizes according to the Schrodinger equation. The ZnCdS QDs size was found to be significantly influenced by their composition: the QDs size decreased with the increasing Zn content. The photocatalytic activity of the ZnCdS QDs was studied using the methylene blue decomposition under UV irradiation. Different photocatalytic activity depending on the composition x was observed and explained. The maximal photocatalytic activity was achieved for x = 0.6 when the energy of the irradiation photons was still sufficient to generate electron-hole pairs in majority of the QDs and at the same time the photocatalytic surface area was maximal.\

    2-DIMENSIONAL MAPS IN THE MOST EXTENDED (PH 2.5-11) IMMOBILIZED PH GRADIENT INTERVAL

    No full text
    In conventional isoelectric focusing in soluble buffers, it has been quite difficult to produce two-dimensional (2-D) separation sin pH intervals greater than pH 4-8. In general more alkaline proteins wer analyzed by non-equilibrium IEF in the first dimension. Even with the advent of immobilized pH gradients (IPG), separations could be extended to pH gradients not wider than pH 3-10, due to a lack of suitable buffers. Since more acidic and more alkaline acrylamido buffers have recently been synthesized, we have been able to optimize what is beleived to be the widest possible immobilized pH gradient, a h 2.5-11 span. We report here for the first time 2-D separations of total tissue lysates in such extended pH 2.5-11 gradients. It appears that, with the IPG technique, close to 100% of all possible cell products can be displayed in a single 2-D map
    corecore