356 research outputs found

    Optical Coherence Tomography for Examination of Parchment Degradation

    Get PDF
    A novel application of Optical Coherence Tomography utilizing infrared light of 830 nm central wavelength for non invasive examination of the structure of parchment, some covered with iron gall ink, is presented. It is shown that both the parchment and the ink applied are sufficiently transparent to light of this wavelength. In the study, Spectral OCT (SOCT) as well as Polarisation Sensitive OCT (PS-OCT) techniques were used to obtain cross-sectional images of samples of parchment based on scattering properties. The second technique was additionally employed to recover the birefringence properties and the optical axis orientations of the sample. It was shown that freshly produced parchment exhibits a degree of birefringence. However, this property declines with ageing, and samples of old parchment completely depolarise the incident light

    An Adult Thymic Stromal-Cell Suspension Model for in Vitro Positive Selection

    Get PDF
    Presented here is a cell-suspension model for positive selection using thymocytes from αβ-TCR (H-2Db-restricted) transgenic mice specific to the lymphocytic choriomeningitis virus (LCMV) on a nonselecting MHC background (H-2d or TAP-1 –/–), cocultured with freshly isolated adult thymus stromal cells of the selecting MHC type. The thymic stromal cells alone induced positive selection of functional CD4-CD8+ cells whose kinetics and efficiency were enhanced by nominal peptide. Fibroblasts expressing the selecting MHC alone did not induce positive selection; however, together with nonselecting stroma and nominal peptide, there was inefficient positive. These results suggest multiple signaling in positive selection with selection events able to occur on multiple-cell types. The ease with which this model can be manipulated should greatly facilitate the resolution of the mechanisms of positive selection in normal and pathological states

    QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data

    Full text link
    Optical coherence tomography (OCT) enables high-resolution and non-invasive 3D imaging of the human retina but is inherently impaired by speckle noise. This paper introduces a spatio-temporal denoising algorithm for OCT data on a B-scan level using a novel quantile sparse image (QuaSI) prior. To remove speckle noise while preserving image structures of diagnostic relevance, we implement our QuaSI prior via median filter regularization coupled with a Huber data fidelity model in a variational approach. For efficient energy minimization, we develop an alternating direction method of multipliers (ADMM) scheme using a linearization of median filtering. Our spatio-temporal method can handle both, denoising of single B-scans and temporally consecutive B-scans, to gain volumetric OCT data with enhanced signal-to-noise ratio. Our algorithm based on 4 B-scans only achieved comparable performance to averaging 13 B-scans and outperformed other current denoising methods.Comment: submitted to MICCAI'1

    Purification and characterization of native human insulin-like growth factor binding protein-6

    Get PDF
    Insulin-like growth factor binding proteins (IGFBPs) are key regulators of insulin-like growth factor (IGF) mediated signal transduction and thereby can profoundly influence cellular phenotypes and cell fate. Whereas IGFBPs are extracellular proteins, intracellular activities were described for several IGFBP family members, such as IGFBP-3, which can be reinternalized by endocytosis and reaches the nucleus through routes that remain to be fully established. Within the family of IGFBPs, IGFBP-6 is unique for its specific binding to IGF-II. IGFBP-6 was described to possess additional IGF-independent activities, which have in part been attributed to its translocation to the nucleus; however, cellular uptake of IGFBP-6 was not described. To further explore IGFBP-6 functions, we developed a new method for the purification of native human IGFBP-6 from cell culture supernatants, involving a four-step affinity purification procedure, which yields highly enriched IGFBP-6. Whereas protein purified in this way retained the capacity to interact with IGF-II and modulate IGF-dependent signal transduction, our data suggest that, unlike IGFBP-3, human IGFBP-6 is not readily internalized by human tumor cells. To summarize, this work describes a novel and efficient method for the purification of native human insulin-like growth factor binding protein 6 (IGFBP-6) from human cell culture supernatants, applying a four-step chromatography procedure. Intactness of purified IGFBP-6 was confirmed by IGF ligand Western blot and ability to modulate IGF-dependent signal transduction. Cellular uptake studies were performed to further characterize the purified protein, showing no short-term uptake of IGFBP-6, in contrast to IGFBP-3

    The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis

    Get PDF
    Clonal haematopoiesis, which is highly prevalent in older individuals, arises from somatic mutations that endow a proliferative advantage to haematopoietic cells. Clonal haematopoiesis increases the risk of myocardial infarction and stroke independently of traditional risk factors(1). Among the common genetic variants that give rise to clonal haematopoiesis, the JAK2(V617F) (JAK2(VF)) mutation, which increases JAK-STAT signalling, occurs at a younger age and imparts the strongest risk of premature coronary heart disease(1,2). Here we show increased proliferation of macrophages and prominent formation of necrotic cores in atherosclerotic lesions in mice that express Jak2(VF) selectively in macrophages, and in chimeric mice that model clonal haematopoiesis. Deletion of the essential inflammasome components caspase 1 and 11, or of the pyroptosis executioner gasdermin D, reversed these adverse changes. Jak2(VF) lesions showed increased expression of AIM2, oxidative DNA damage and DNA replication stress, and Aim2 deficiency reduced atherosclerosis. Single-cell RNA sequencing analysis of Jak2(VF) lesions revealed a landscape that was enriched for inflammatory myeloid cells, which were suppressed by deletion of Gsdmd. Inhibition of the inflammasome product interleukin-1 beta reduced macrophage proliferation and necrotic formation while increasing the thickness of fibrous caps, indicating that it stabilized plaques. Our findings suggest that increased proliferation and glycolytic metabolism in Jak2(VF) macrophages lead to DNA replication stress and activation of the AIM2 inflammasome, thereby aggravating atherosclerosis. Precise application of therapies that target interleukin-1 beta or specific inflammasomes according to clonal haematopoiesis status could substantially reduce cardiovascular risk

    Dendritic cell-specific delivery of Flt3L by coronavirus vectors secures induction of therapeutic antitumor immunity

    Get PDF
    Efficacy of antitumor vaccination depends to a large extent on antigen targeting to dendritic cells (DCs). Here, we assessed antitumor immunity induced by attenuated coronavirus vectors which exclusively target DCs in vivo and express either lymphocyte- or DC-activating cytokines in combination with a GFP-tagged model antigen. Tracking of in vivo transduced DCs revealed that vectors encoding for Fms-like tyrosine kinase 3 ligand (Flt3L) exhibited a higher capacity to induce DC maturation compared to vectors delivering IL-2 or IL-15. Moreover, Flt3L vectors more efficiently induced tumor-specific CD8(+) T cells, expanded the epitope repertoire, and provided both prophylactic and therapeutic tumor immunity. In contrast, IL-2- or IL-15-encoding vectors showed a substantially lower efficacy in CD8(+) T cell priming and failed to protect the host once tumors had been established. Thus, specific in vivo targeting of DCs with coronavirus vectors in conjunction with appropriate conditioning of the microenvironment through Flt3L represents an efficient strategy for the generation of therapeutic antitumor immunity

    Nuclear Receptor Rev-erb Alpha (Nr1d1) Functions in Concert with Nr2e3 to Regulate Transcriptional Networks in the Retina

    Get PDF
    The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function

    Maturation-Dependent Licensing of Naive T Cells for Rapid TNF Production

    Get PDF
    The peripheral naïve T cell pool is comprised of a heterogeneous population of cells at various stages of development, which is a process that begins in the thymus and is completed after a post-thymic maturation phase in the periphery. One hallmark of naïve T cells in secondary lymphoid organs is their unique ability to produce TNF rapidly after activation and prior to acquiring other effector functions. To determine how maturation influences the licensing of naïve T cells to produce TNF, we compared cytokine profiles of CD4+ and CD8+ single positive (SP) thymocytes, recent thymic emigrants (RTEs) and mature-naïve (MN) T cells during TCR activation. SP thymocytes exhibited a poor ability to produce TNF when compared to splenic T cells despite expressing similar TCR levels and possessing comparable activation kinetics (upregulation of CD25 and CD69). Provision of optimal antigen presenting cells from the spleen did not fully enable SP thymocytes to produce TNF, suggesting an intrinsic defect in their ability to produce TNF efficiently. Using a thymocyte adoptive transfer model, we demonstrate that the ability of T cells to produce TNF increases progressively with time in the periphery as a function of their maturation state. RTEs that were identified in NG-BAC transgenic mice by the expression of GFP showed a significantly enhanced ability to express TNF relative to SP thymocytes but not to the extent of fully MN T cells. Together, these findings suggest that TNF expression by naïve T cells is regulated via a gradual licensing process that requires functional maturation in peripheral lymphoid organs

    The cytotoxic T cell proteome and its shaping by the kinase mTOR

    Get PDF
    High-resolution mass spectrometry maps the cytotoxic T lymphocyte (CTL) proteome and the impact of mammalian target of rapamycin complex 1 (mTORC1) on CTLs. The CTL proteome was dominated by metabolic regulators and granzymes and mTORC1 selectively repressed and promoted expression of subset of CTL proteins (~10%). These included key CTL effector molecules, signaling proteins and a subset of metabolic enzymes. Proteomic data highlighted the potential for mTORC1 negative control of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) production in CTL. mTORC1 was shown to repress PtdIns(3,4,5)P(3) production and to determine the mTORC2 requirement for activation of the kinase Akt. Unbiased proteomic analysis thus provides a comprehensive understanding of CTL identity and mTORC1 control of CTL function
    corecore