23,281 research outputs found

    Hydrodynamic slip boundary condition at chemically patterned surfaces: A continuum deduction from molecular dynamics

    Full text link
    We investigate the slip boundary condition for single-phase flow past a chemically patterned surface. Molecular dynamics (MD) simulations show that modulation of fluid-solid interaction along a chemically patterned surface induces a lateral structure in the fluid molecular organization near the surface. Consequently, various forces and stresses in the fluid vary along the patterned surface. Given the presence of these lateral variations, a general scheme is developed to extract hydrodynamic information from MD data. With the help of this scheme, the validity of the Navier slip boundary condition is verified for the chemically patterned surface, where a local slip length can be defined. Based on the MD results, a continuum hydrodynamic model is formulated using the Navier-Stokes equation and the Navier boundary condition, with a slip length varying along the patterned surface. Steady-state velocity fields from continuum calculations are in quantitative agreement with those from MD simulations. It is shown that, when the pattern period is sufficiently small, the solid surface appears to be homogeneous, with an effective slip length that can be controlled by surface patterning. Such a tunable slip length may have important applications in nanofluidics.Comment: 41 pages, 17 figure

    Ab initio study of shock compressed oxygen

    Full text link
    Quantum molecular dynamic simulations are introduced to study the shock compressed oxygen. The principal Hugoniot points derived from the equation of state agree well with the available experimental data. With the increase of pressure, molecular dissociation is observed. Electron spin polarization determines the electronic structure of the system under low pressure, while it is suppressed around 30 \sim 50 GPa. Particularly, nonmetal-metal transition is taken into account, which also occurs at about 30 \sim 50 GPa. In addition, the optical properties of shock compressed oxygen are also discussed.Comment: 5 pages, 5 figure

    Structural and electronic properties of ScnOm (n=1~3, m=1~2n) clusters: Theoretical study using screened hybrid density functional theory

    Full text link
    The structural and electronic properties of small scandium oxide clusters ScnOm (n = 1 - 3, m = 1 - 2n) are systematically studied within the screened hybrid density functional theory. It is found that the ground states of these scandium oxide clusters can be obtained by the sequential oxidation of small "core" scandium clusters. The fragmentation analysis demonstrates that the ScO, Sc2O2, Sc2O3, Sc3O3, and Sc3O4 clusters are especially stable. Strong hybridizations between O-2p and Sc-3d orbitals are found to be the most significant character around the Fermi level. In comparison with standard density functional theory calculations, we find that the screened hybrid density functional theory can correct the wrong symmetries and yield more precise description for the localized 3d electronic states of scandium.Comment: 8 figure

    Pregibit: A Family of Discrete Choice Models

    Get PDF
    The pregibit discrete choice model is built on a distribution that allows symmetry or asymmetry and thick tails, thin tails or no tails. Thus the model is much richer than the traditional models that are typically used to study behavior that generates discrete choice outcomes. Pregibit nests logit, approximately nests probit, loglog, cloglog and gosset models, and yields a linear probability model that is solidly founded on the discrete choice framework that underlies logit and probit.post-secondary education, probit, logit, asymmetry, discrete choice, mortgage application

    Sensitivity of the LHC to Electroweak Symmetry Breaking: Equivalence Theorem as a Criterion

    Get PDF
    Based upon our recent study on the intrinsic connection between the longitudinal weak-boson scatterings and probing the electroweak symmetry breaking (EWSB) mechanism, we reveal the profound physical content of the Equivalence Theorem (ET) as being able to discriminate physical processes which are sensitive/insensitive to probing the EWSB sector. With this physical content of the ET as a criterion, we analyze the complete set of the bosonic operators in the electroweak chiral Lagrangian and systematically classify the sensitivities to probing all these operators at the CERN LHC via the weak-boson fusion in W±W±W^\pm W^\pm channel. This is achieved by developing a precise power counting rule (a generalization from Weinberg's counting method) to {\it separately} count the power dependences on the energy EE and all relevant mass scales.Comment: 33 pages, LaTeX, 10 figures and Table-1b are in the separate file figtab.uu. (The only change made from the previous version is to fix the bugs in the uuencoded file.

    Flux-lattice melting in LaO1x_{1-x}Fx_{x}FeAs: first-principles prediction

    Full text link
    We report the theoretical study of the flux-lattice melting in the novel iron-based superconductor LaO0.9F0.1FeAsLaO_{0.9}F_{0.1}FeAs and LaO0.925F0.075FeAsLaO_{0.925}F_{0.075}FeAs. Using the Hypernetted-Chain closure and an efficient algorithm, we calculate the two-dimensional one-component plasma pair distribution functions, static structure factors and direct correlation functions at various temperatures. The Hansen-Verlet freezing criterion is shown to be valid for vortex-liquid freezing in type-II superconductors. Flux-lattice meting lines for LaO0.9F0.1FeAsLaO_{0.9}F_{0.1}FeAs and LaO0.925F0.075FeAsLaO_{0.925}F_{0.075}FeAs are predicted through the combination of the density functional theory and the mean-field substrate approach.Comment: 5 pages, 4 figures, to appear in Phys. Rev.

    Manifestation of important role of nuclear forces in emission of photons in scattering of pions off nuclei

    Full text link
    Bremsstrahlung of photons emitted during the scattering of π+\pi^{+}-mesons off nuclei is studied for the first time. Role of interactions between π+\pi^{+}-mesons and nuclei in the formation of the bremsstrahlung emission is analyzed in details. We discover essential contribution of emitted photons from nuclear part of Johnson-Satchler potential to the full spectrum, in contrast to the optical Woods-Saxon potential. We observe unusual essential influence of the nuclear part of both potentials on the spectrum at high photon energies. This phenomenon opens a new experimental way to study and check non-Coulomb and nuclear interactions between pions and nuclei via measurements of the emitted photons. We provide predictions of the bremsstrahlung spectra for pion scattering off 44Ca^{44}{\rm Ca}.Comment: 14 pages, 3 figure

    Longitudinal/Goldstone boson equivalence and phenomenology of probing the electroweak symmetry breaking

    Get PDF
    We formulate the equivalence between the longitudinal weak-boson and the Goldstone boson as a criterion for sensitively probing the electroweak symmetry breaking mechanism and develop a precise power counting rule for chiral Lagrangian formulated electroweak theories. With these we semi-quatitatively analyze the sensitivities to various effective operators related to electrowaeak symmetry breaking via weak-boson scatterings at the CERN Large Hadron Collider (LHC).Comment: 6 pages, LaTex, 1 postscript figure included using psfig.te
    corecore