150 research outputs found

    Expression and function of human hemokinin-1 in human and guinea pig airways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the <it>TAC4 </it>gene. <it>TAC4 </it>and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study.</p> <p>Methods</p> <p>RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages.</p> <p>Results</p> <p>In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK<sub>1</sub>-and NK<sub>2</sub>-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK<sub>2</sub>-receptors, which blockade unmasked a NK<sub>1</sub>-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK<sub>1</sub>-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages.</p> <p>Conclusions</p> <p>We demonstrate endogenous expression of <it>TAC4 </it>in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.</p

    Tachykinins Stimulate a Subset of Mouse Taste Cells

    Get PDF
    The tachykinins substance P (SP) and neurokinin A (NKA) are present in nociceptive sensory fibers expressing transient receptor potential cation channel, subfamily V, member 1 (TRPV1). These fibers are found extensively in and around the taste buds of several species. Tachykinins are released from nociceptive fibers by irritants such as capsaicin, the active compound found in chili peppers commonly associated with the sensation of spiciness. Using real-time Ca2+-imaging on isolated taste cells, it was observed that SP induces Ca2+ -responses in a subset of taste cells at concentrations in the low nanomolar range. These responses were reversibly inhibited by blocking the SP receptor NK-1R. NKA also induced Ca2+-responses in a subset of taste cells, but only at concentrations in the high nanomolar range. These responses were only partially inhibited by blocking the NKA receptor NK-2R, and were also inhibited by blocking NK-1R indicating that NKA is only active in taste cells at concentrations that activate both receptors. In addition, it was determined that tachykinin signaling in taste cells requires Ca2+-release from endoplasmic reticulum stores. RT-PCR analysis further confirmed that mouse taste buds express NK-1R and NK-2R. Using Ca2+-imaging and single cell RT-PCR, it was determined that the majority of tachykinin-responsive taste cells were Type I (Glial-like) and umami-responsive Type II (Receptor) cells. Importantly, stimulating NK-1R had an additive effect on Ca2+ responses evoked by umami stimuli in Type II (Receptor) cells. This data indicates that tachykinin release from nociceptive sensory fibers in and around taste buds may enhance umami and other taste modalities, providing a possible mechanism for the increased palatability of spicy foods

    On a Case of Coexisting Extra- And Intra-Uterine Pregnancy.

    No full text
    n/

    A mathematical description of miniature postsynaptic current generation at central nervous system synapses.

    Get PDF
    Variation in the amplitude of miniature postsynaptic currents (mPSCs) generated by individual quanta of neurotransmitter is a major contributor to the variance of evoked synaptic responses. Here we explore the possible origins of this variability by developing a mathematical description of mPSC generation and consider the contribution of "off-center" release to this variability. By "off-center" release we mean variation in the distance between the position where a presynaptic vesicle discharges its content of neurotransmitter into the synaptic cleft and the center of a cluster of postsynaptic receptors (PRCs) that responds to those transmitter molecules by generating an mPSC. We show that when the time course of quantal discharge through a fusion pore (noninstantaneous release) is considered, elementary analytical descriptions of the subsequent diffusion of transmitter within the synaptic cleft (with or without uptake) predict the development of significant gradients of transmitter concentration during the rising phase of mPSCs. This description of diffusion is combined with a description of the pharmacodynamics of receptors in the PRC and of the time dependence of the gradient of transmitter concentration over the area of the PRC to reconstruct the time course and amplitude of an mPSC for a synapse of a given geometry. Within the constraints of known dimensions of presynaptic active zones and postsynaptic receptor clusters at CNS synapses, our analysis suggests that "off-center" release, produced by allowing release to occur anywhere within an anatomically defined presynaptic active zone, can be an important contributor to mPSC variability. Indeed, modulation of the influence of "off-center" release may be a novel way of controlling synaptic efficacy. We also show how noninstantaneous release can serve to focus the action of neurotransmitter within a given synapse and thereby reduce cross-talk between synapses

    Analytical description of the activation of multi-state receptors by continuous neurotransmitter signals at brain synapses.

    Get PDF
    Chemical synaptic transmission is a fundamental component of interneuronal communications in the central nervous system (CNS). Discharge of a presynaptic vesicle containing a few thousand molecules (a quantum) of neurotransmitter into the synaptic cleft generates a transmitter concentration signal that drives postsynaptic ion-channel receptors. These receptors exhibit multiple states, with state transition kinetics dependent on neurotransmitter concentration. Here, a novel and simple analytical approach for describing gating of multi-state receptors by signals with complex continuous time courses is used to describe the generation of glutamate-mediated quantal postsynaptic responses at brain synapses. The neurotransmitter signal, experienced by multi-state N-methyl-D-aspartate (NMDA)- and L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors at specific points in a synaptic cleft, is approximated by a series of step functions of different intensity and duration and used to drive a Markovian, multi-state kinetic scheme that describes receptor gating. Occupancy vectors at any point in time can be computed interatively from the occupancy vectors at the times of steps in transmitter concentration. Multi-state kinetic schemes for both the low-affinity AMPA subtype of glutamate receptor and for the high-affinity NMDA subtype are considered, and expected NMDA and AMPA components of synaptic currents are calculated. The amplitude of quantal responses mediated by postsynaptic receptor clusters having specific spatial distributions relative to foci of quantal neurotransmitter release is then calculated and related to the displacement between the center of the postsynaptic receptor cluster and the focus of synaptic vesicle discharge. Using this approach we show that the spatial relation between the focus of release and the center of the postsynaptic receptor cluster affects synaptic efficacy. We also show how variation in this relation contributes to variation in synaptic current amplitudes

    Origin of the potassium and voltage dependence of the cardiac inwardly rectifying K-current (IK1).

    Get PDF
    Using various voltage clamp protocols, we have examined the activation and deactivation kinetics of IK1 recorded in dissociated myocytes obtained from canine purkinje fibers. Exponential current relaxations following step changes of the membrane potential were characterized at several different K levels (5, 12, 42, and 82 mM) and several voltages (K reversal potential +/- 40 mV). We have interpreted our data according to a K-activated, K-channel model of IK1 gating. Our data suggests that at least two binding sites for extracellular K must be occupied before the channel opens and occupancy of about three more higher affinity sites for K on the open channel will slow the closing of that channel. In our model, the voltage dependency of gating arises from a combination of three voltage dependent steps: (a) isomerization between open and closed states, (b) binding of K, and (c) occupancy of the channel by internal Mg. Lowering internal K to 40 mM causes major changes in the voltage and K dependence of IK1 gating. However, these changes could be accounted for in our model by relatively small (approximately 20 to 30 mV) shifts in the voltage dependence of several of the steps that govern gating. Our data further suggest that there is an interaction between both extracellular and intracellular K levels and the ability of intracellular Mg to block the IK1 channel
    • …
    corecore