35 research outputs found

    Study of the Hole Transport Processes in Solution-Processed Layers of the Wide Bandgap Semiconductor Copper(I) Thiocyanate (CuSCN)

    Get PDF
    Wide bandgap hole-transporting semiconductor copper(I) thiocyanate (CuSCN) has recently shown promise both as a transparent p-type channel material for thin-film transistors and as a hole-transporting layer in organic light-emitting diodes and organic photovoltaics. Herein, the hole-transport properties of solution-processed CuSCN layers are investigated. Metal-insulator-semiconductor capacitors are employed to determine key material parameters including: dielectric constant [5.1 (±1.0)], flat-band voltage [-0.7 (±0.1) V], and unintentional hole doping concentration [7.2 (±1.4) × 1017 cm-3]. The density of localized hole states in the mobility gap is analyzed using electrical field-effect measurements; the distribution can be approximated invoking an exponential function with a characteristic energy of 42.4 (±0.1) meV. Further investigation using temperature-dependent mobility measurements in the range 78-318 K reveals the existence of three transport regimes. The first two regimes observed at high (303-228 K) and intermediate (228-123 K) temperatures are described with multiple trapping and release and variable range hopping processes, respectively. The third regime observed at low temperatures (123-78 K) exhibits weak temperature dependence and is attributed to a field-assisted hopping process. The transitions between the mechanisms are discussed based on the temperature dependence of the transport energy. The wide bandgap p-type semiconductor copper(I) thiocyanate (CuSCN) has the potential to replace conventional hole-transport materials in numerous opto/electronics applications. This work provides a comprehensive analysis of the charge transport properties of solution-processed CuSCN layers. Various techniques are employed to evaluate the dielectric constant, flat-band voltage, unintentional doping concentration, density of states in the mobility gap, and hole-transport mechanisms.Department of Applied PhysicsMaterials Research Centr

    p-channel thin-film transistors based on spray-coated Cu2O films

    No full text
    Thin films of cuprous oxide (Cu2O) were grown using solution-based spray pyrolysis in ambient air and incorporated into hole-transporting thin-film transistors. The phase of the oxide was confirmed by X-ray diffraction measurements while the optical band gap of the films was determined to be ∼2.57 eV from optical transmission measurements. Electrical characterization of Cu2O films was performed using bottom-gate, bottom-contact transistors based on SiO2 gate dielectric and gold source-drain electrodes. As-prepared devices show clear p-channel operation with field-effect hole mobilities in the range of 10−4–10−3 cm2 V−1 s−1 with some devices exhibiting values close to 1 × 10−2 cm2 V−1 s−1

    Assessing the suitability of copper thiocyanate as a hole-transport layer in inverted CsSnI3 perovskite photovoltaics

    Get PDF
    We report the fndings of a study into the suitability of copper (I) thiocyanate (CuSCN) as a hole-transport layer in inverted photovoltaic (PV) devices based on the black gamma phase (B-γ) of CsSnl3 perovskite. Remarkably, when B-γ-CsSnI3 perovskite is deposited from a dimethylformamide solution onto a 180–190nm thick CuSCN flm supported on an indium-tin oxide (ITO) electrode, the CuSCN layer is completely displaced leaving a perovskite layer with high uniformity and coverage of the underlying ITO electrode. This fnding is confrmed by detailed analysis of the thickness and composition of the film that remains after perovskite deposition, together with photovoltaic device studies. The results of this study show that, whilst CuSCN has proved to be an excellent hole-extraction layer for high performance lead-perovskite and organic photovoltaics, it is unsuitable as a hole-transport layer in inverted B-γCsSnI3 perovskite photovoltaics processed from solution

    Metal‐halide perovskite transistors for printed electronics: challenges and opportunities

    No full text
    Following the unprecedented rise in photovoltaic power conversion efficiencies during the past five years, metal-halide perovskites (MHPs) have emerged as a new and highly promising class of solar-energy materials. Their extraordinary electrical and optical properties combined with the abundance of the raw materials, the simplicity of synthetic routes, and processing versatility make MHPs ideal for cost-efficient, large-volume manufacturing of a plethora of optoelectronic devices that span far beyond photovoltaics. Herein looks beyond current applications in the field of energy, to the area of large-area electronics using MHPs as the semiconductor material. A comprehensive overview of the relevant fundamental material properties of MHPs, including crystal structure, electronic states, and charge transport, is provided first. Thereafter, recent demonstrations of MHP-based thin-film transistors and their application in logic circuits, as well as bi-functional devices such as light-sensing and light-emitting transistors, are discussed. Finally, the challenges and opportunities in the area of MHPs-based electronics, with particular emphasis on manufacturing, stability, and health and environmental concerns, are highlighted

    Metal‐halide perovskite transistors for printed electronics: challenges and opportunities

    No full text
    Following the unprecedented rise in photovoltaic power conversion efficiencies during the past five years, metal-halide perovskites (MHPs) have emerged as a new and highly promising class of solar-energy materials. Their extraordinary electrical and optical properties combined with the abundance of the raw materials, the simplicity of synthetic routes, and processing versatility make MHPs ideal for cost-efficient, large-volume manufacturing of a plethora of optoelectronic devices that span far beyond photovoltaics. Herein looks beyond current applications in the field of energy, to the area of large-area electronics using MHPs as the semiconductor material. A comprehensive overview of the relevant fundamental material properties of MHPs, including crystal structure, electronic states, and charge transport, is provided first. Thereafter, recent demonstrations of MHP-based thin-film transistors and their application in logic circuits, as well as bi-functional devices such as light-sensing and light-emitting transistors, are discussed. Finally, the challenges and opportunities in the area of MHPs-based electronics, with particular emphasis on manufacturing, stability, and health and environmental concerns, are highlighted

    Hybrid Phototransistors-based on Dye-functionalised ZnO Semiconducting Channels

    No full text
    Oxide semiconductors are a promising family of materials for applications in transparent thin-film transistors for large area electronics. As a result research effort in recent years has been mainly focussing on the development of improved oxide semiconductors and devices with enhanced carrier mobility and operating stability. Here we report on the use of solution processed oxide semiconductors and organic light-absorbing dyes for the demonstration of novel bifunctional hybrid transistors. Specifically, we combine solution processed ZnO with light absorbing organic dyes, containing suitable anchoring groups, to produce photo-active ZnO-dye interfaces and implement these into optimised transistor architectures. Despite the incorporation of the organic dye on the surface of the ZnO channel layer, the transistors exhibit good operating characteristics with high electron mobility and excellent current on/off ratio. In addition to their electrical switching, the hybrid transistors are also found to exhibit high photoresponse to visible light. In particular, the channel current in these devices can easily be modulated by either the illumination intensity of the incident light and/or its wavelength. To the best of our knowledge, this is the first ever demonstration of a hybrid phototransistor based on a combination of oxide and organic materials. Use of such devices could one day provide significant advantages over conventional diode-type photodetectors due to the high internal signal gain, the intrinsically low RC constants (important for high-speed applications) and the potential for colour selective light detection by chemical tailoring of the organic dye. Apart from their technological applications, such hybrid photoactive devices could also provide an ideal test-bed for the study of the charge transfer processes at oxide/organic interfaces upon electrical/photo-excitation
    corecore