165 research outputs found

    Customized television: Standards compliant advanced digital television

    Get PDF
    This correspondence describes a European Union supported collaborative project called CustomTV based on the premise that future TV sets will provide all sorts of multimedia information and interactivity, as well as manage all such services according to each user’s or group of user’s preferences/profiles. We have demonstrated the potential of recent standards (MPEG-4 and MPEG-7) to implement such a scenario by building the following services: an advanced EPG, Weather Forecasting, and Stock Exchange/Flight Information

    New time-type and space-type non-standard quantum algebras and discrete symmetries

    Full text link
    Starting from the classical r-matrix of the non-standard (or Jordanian) quantum deformation of the sl(2,R) algebra, new triangular quantum deformations for the real Lie algebras so(2,2), so(3,1) and iso(2,1) are simultaneously constructed by using a graded contraction scheme; these are realized as deformations of conformal algebras of (1+1)-dimensional spacetimes. Time-type and space-type quantum algebras are considered according to the generator that remains primitive after deformation: either the time or the space translation, respectively. Furthermore by introducing differential-difference conformal realizations, these families of quantum algebras are shown to be the symmetry algebras of either a time or a space discretization of (1+1)-dimensional (wave and Laplace) equations on uniform lattices; the relationship with the known Lie symmetry approach to these discrete equations is established by means of twist maps.Comment: 17 pages, LaTe

    Jordanian Quantum Algebra Uh(sl(N)){\cal U}_{\sf h}(sl(N)) via Contraction Method and Mapping

    Full text link
    Using the contraction procedure introduced by us in Ref. \cite{ACC2}, we construct, in the first part of the present letter, the Jordanian quantum Hopf algebra Uh(sl(3)){\cal U}_{\sf h}(sl(3)) which has a remarkably simple coalgebraic structure and contains the Jordanian Hopf algebra Uh(sl(2)){\cal U}_{\sf h}(sl(2)), obtained by Ohn, as a subalgebra. A nonlinear map between Uh(sl(3)){\cal U}_{\sf h}(sl(3)) and the classical sl(3)sl(3) algebra is then established. In the second part, we give the higher dimensional Jordanian algebras Uh(sl(N)){\cal U}_{\sf h}(sl(N)) for all NN. The Universal Rh{\cal R}_{\sf h}-matrix of Uh(sl(N)){\cal U}_{\sf h} (sl(N)) is also given.Comment: 17 pages, Late

    Bicovariant Differential Geometry of the Quantum Group SLh(2)SL_h(2)

    Full text link
    There are only two quantum group structures on the space of two by two unimodular matrices, these are the SLq(2)SL_q(2) and the SLh(2)SL_h(2) [9-13] quantum groups. One can not construct a differential geometry on SLq(2) SL_q(2), which at the same time is bicovariant, has three generators, and satisfies the Liebnitz rule. We show that such a differential geometry exists for the quantum group SLh(2)SL_h(2) and derive all of its properties

    Jordanian Twist Quantization of D=4 Lorentz and Poincare Algebras and D=3 Contraction Limit

    Get PDF
    We describe in detail two-parameter nonstandard quantum deformation of D=4 Lorentz algebra o(3,1)\mathfrak{o}(3,1), linked with Jordanian deformation of sl(2;C)\mathfrak{sl} (2;\mathbb{C}). Using twist quantization technique we obtain the explicit formulae for the deformed coproducts and antipodes. Further extending the considered deformation to the D=4 Poincar\'{e} algebra we obtain a new Hopf-algebraic deformation of four-dimensional relativistic symmetries with dimensionless deformation parameter. Finally, we interpret o(3,1)\mathfrak{o}(3,1) as the D=3 de-Sitter algebra and calculate the contraction limit R→∞R\to\infty (RR -- de-Sitter radius) providing explicit Hopf algebra structure for the quantum deformation of the D=3 Poincar\'{e} algebra (with masslike deformation parameters), which is the two-parameter light-cone Îș\kappa-deformation of the D=3 Poincar\'{e} symmetry.Comment: 13 pages, no figure

    Degenerate Sklyanin Algebras

    Full text link
    New trigonometric and rational solutions of the quantum Yang-Baxter equation (QYBE) are obtained by applying some singular gauge transformations to the known Belavin-Drinfeld elliptic R-matrix for sl(2,C)sl(2,\mathbb{C}). These solutions are shown to be related to the standard ones by the quasi-Hopf twist. We demonstrate that the quantum algebras arising from these new R-matrices can be obtained as special limits of the Sklyanin algebra. A representation for these algebras by the difference operators is found. The sl(N,C)sl(N,\mathbb{C})-case is discussed.Comment: 12 page

    Twist maps for non-standard quantum algebras and discrete Schrodinger symmetries

    Full text link
    The minimal twist map introduced by B. Abdesselam, A. Chakrabarti, R. Chakrabarti and J. Segar (Mod. Phys. Lett. A 14 (1999) 765) for the non-standard (Jordanian) quantum sl(2,R) algebra is used to construct the twist maps for two different non-standard quantum deformations of the (1+1) Schrodinger algebra. Such deformations are, respectively, the symmetry algebras of a space and a time uniform lattice discretization of the (1+1) free Schrodinger equation. It is shown that the corresponding twist maps connect the usual Lie symmetry approach to these discrete equations with non-standard quantum deformations. This relationship leads to a clear interpretation of the deformation parameter as the step of the uniform (space or time) lattice.Comment: 16 pages, LaTe

    Multiparametric quantum gl(2): Lie bialgebras, quantum R-matrices and non-relativistic limits

    Full text link
    Multiparametric quantum deformations of gl(2)gl(2) are studied through a complete classification of gl(2)gl(2) Lie bialgebra structures. From them, the non-relativistic limit leading to harmonic oscillator Lie bialgebras is implemented by means of a contraction procedure. New quantum deformations of gl(2)gl(2) together with their associated quantum RR-matrices are obtained and other known quantizations are recovered and classified. Several connections with integrable models are outlined.Comment: 21 pages, LaTeX. To appear in J. Phys. A. New contents adde

    Boson representations, non-standard quantum algebras and contractions

    Full text link
    A Gelfan'd--Dyson mapping is used to generate a one-boson realization for the non-standard quantum deformation of sl(2,R)sl(2,\R) which directly provides its infinite and finite dimensional irreducible representations. Tensor product decompositions are worked out for some examples. Relations between contraction methods and boson realizations are also explored in several contexts. So, a class of two-boson representations for the non-standard deformation of sl(2,R)sl(2,\R) is introduced and contracted to the non-standard quantum (1+1) Poincar\'e representations. Likewise, a quantum extended Hopf sl(2,R)sl(2,\R) algebra is constructed and the Jordanian qq-oscillator algebra representations are obtained from it by means of another contraction procedure.Comment: 21 pages, LaTeX; two new references adde

    Classical integrability of Schrodinger sigma models and q-deformed Poincare symmetry

    Get PDF
    We discuss classical integrable structure of two-dimensional sigma models which have three-dimensional Schrodinger spacetimes as target spaces. The Schrodinger spacetimes are regarded as null-like deformations of AdS_3. The original AdS_3 isometry SL(2,R)_L x SL(2,R)_R is broken to SL(2,R)_L x U(1)_R due to the deformation. According to this symmetry, there are two descriptions to describe the classical dynamics of the system, 1) the SL(2,R)_L description and 2) the enhanced U(1)_R description. In the former 1), we show that the Yangian symmetry is realized by improving the SL(2,R)_L Noether current. Then a Lax pair is constructed with the improved current and the classical integrability is shown by deriving the r/s-matrix algebra. In the latter 2), we find a non-local current by using a scaling limit of warped AdS_3 and that it enhances U(1)_R to a q-deformed Poincare algebra. Then another Lax pair is presented and the corresponding r/s-matrices are also computed. The two descriptions are equivalent via a non-local map.Comment: 20 pages, no figure, further clarification and references adde
    • 

    corecore