Abstract

A Gelfan'd--Dyson mapping is used to generate a one-boson realization for the non-standard quantum deformation of sl(2,R)sl(2,\R) which directly provides its infinite and finite dimensional irreducible representations. Tensor product decompositions are worked out for some examples. Relations between contraction methods and boson realizations are also explored in several contexts. So, a class of two-boson representations for the non-standard deformation of sl(2,R)sl(2,\R) is introduced and contracted to the non-standard quantum (1+1) Poincar\'e representations. Likewise, a quantum extended Hopf sl(2,R)sl(2,\R) algebra is constructed and the Jordanian qq-oscillator algebra representations are obtained from it by means of another contraction procedure.Comment: 21 pages, LaTeX; two new references adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019