706 research outputs found

    Ground-state properties of the attractive one-dimensional Bose-Hubbard model

    Full text link
    We study the ground state of the attractive one-dimensional Bose-Hubbard model, and in particular the nature of the crossover between the weak interaction and strong interaction regimes for finite system sizes. Indicator properties like the gap between the ground and first excited energy levels, and the incremental ground-state wavefunction overlaps are used to locate different regimes. Using mean-field theory we predict that there are two distinct crossovers connected to spontaneous symmetry breaking of the ground state. The first crossover arises in an analysis valid for large L with finite N, where L is the number of lattice sites and N is the total particle number. An alternative approach valid for large N with finite L yields a second crossover. For small system sizes we numerically investigate the model and observe that there are signatures of both crossovers. We compare with exact results from Bethe ansatz methods in several limiting cases to explore the validity for these numerical and mean-field schemes. The results indicate that for finite attractive systems there are generically three ground-state phases of the model.Comment: 17 pages, 12 figures, Phys.Rev.B(accepted), minor changes and updated reference

    Integrable models and quantum spin ladders: comparison between theory and experiment for the strong coupling ladder compounds

    Full text link
    (abbreviated) This article considers recent advances in the investigation of the thermal and magnetic properties of integrable spin ladder models and their applicability to the physics of real compounds. The ground state properties of the integrable two-leg spin-1/2 and the mixed spin-(1/2,1) ladder models at zero temperature are analyzed by means of the Thermodynamic Bethe Ansatz. Solving the TBA equations yields exact results for the critical fields and critical behaviour. The thermal and magnetic properties of the models are investigated in terms of the recently introduced High Temperature Expansion method, which is discussed in detail. It is shown that in the strong coupling limit the integrable spin-1/2 ladder model exhibits three quantum phases: (i) a gapped phase in the regime H<Hc1H<H_{c1}, (ii) a fully polarised phase for H>Hc2H>H_{c2}, and (iii) a Luttinger liquid magnetic phase in the regime Hc1<H<Hc2H_{c1}<H<H_{c2}. The critical behaviour in the vicinity of the critical points is of the Pokrovsky-Talapov type. The temperature-dependent thermal and magnetic properties are directly evaluated from the exact free energy expression and compared to known experimental results for a range of strong coupling ladder compounds. Similar analysis of the mixed spin-(1/2,1) ladder model reveals a rich phase diagram, with a 1/3 and a full saturation magnetisation plateau within the strong antiferromagnetic rung coupling regime. For weak rung coupling, the fractional magnetisation plateau is diminished and a new quantum phase transition occurs. The phase diagram can be directly deduced from the magnetisation curve obtained from the exact result derived from the HTE. The thermodynamics of the spin-orbital model with different single-ion anisotropies is also investigated.Comment: 90 pages, 33 figures, extensive revisio

    On the global hydration kinetics of tricalcium silicate cement

    Full text link
    We reconsider a number of measurements for the overall hydration kinetics of tricalcium silicate pastes having an initial water to cement weight ratio close to 0.5. We find that the time dependent ratio of hydrated and unhydrated silica mole numbers can be well characterized by two power-laws in time, x/(1x)(t/tx)ψx/(1-x)\sim (t/t_x)^\psi. For early times t<txt < t_x we find an `accelerated' hydration (ψ=5/2\psi = 5/2) and for later times t>txt > t_x a `deaccelerated' behavior (ψ=1/2\psi = 1/2). The crossover time is estimated as tx16hourst_x \approx 16 hours. We interpret these results in terms of a global second order rate equation indicating that (a) hydrates catalyse the hydration process for t<txt<t_x, (b) they inhibit further hydration for t>txt > t_x and (c) the value of the associated second order rate constant is of magnitude 6x10^{-7} - 7x10^{-6} liter mol^{-1} s^{-1}. We argue, by considering the hydration process actually being furnished as a diffusion limited precipitation that the exponents ψ=5/2\psi = 5/2 and ψ=1/2\psi = 1/2 directly indicate a preferentially `plate' like hydrate microstructure. This is essentially in agreement with experimental observations of cellular hydrate microstructures for this class of materials.Comment: RevTeX macros, 6 pages, 4 postscript figure

    Evidence for the super Tonks-Girardeau gas

    Full text link
    We provide evidence in support of a recent proposal by Astrakharchik at al. for the existence of a super Tonks-Girardeau gas-like state in the attractive interaction regime of quasi-one-dimensional Bose gases. We show that the super Tonks-Giradeau gas-like state corresponds to a highly-excited Bethe state in the integrable interacting Bose gas for which the bosons acquire hard-core behaviour. The gas-like state properties vary smoothly throughout a wide range from strong repulsion to strong attraction. There is an additional stable gas-like phase in this regime in which the bosons form two-body bound states behaving like hard-core bosons.Comment: 10 pages, 1 figure, 2 tables, additional text on the stability of the super T-G gas-like stat

    Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe.

    Get PDF
    Investigation of yeast neutral lipid accumulation is important for biotechnology and also for modelling aberrant lipid metabolism in human disease. The Nile red (NR) method has been extensively utilised to determine lipid phenotypes of yeast cells via microscopic means. NR assays have been used to differentiate lipid accumulation and relative amounts of lipid in oleaginous species but have not been thoroughly validated for phenotype determination arising from genetic modification. A modified NR assay, first described by Sitepu et al. (J Microbiol Methods 91:321-328, 2012), was able to detect neutral lipid changes in Saccharomyces cerevisiae deletion mutants with sensitivity similar to more advanced methodology. We have also be able to, for the first time, successfully apply the NR assay to the well characterised fission yeast Schizosaccharomyces pombe, an increasingly important organism in biotechnology. The described NR fluorescence assay is suitable for increased throughput and rapid screening of genetically modified strains in both the biotechnology industry and for modelling ectopic lipid production for a variety of human diseases. This ultimately negates the need for labour intensive and time consuming lipid analyses of samples that may not yield a desirable lipid phenotype, whilst genetic modifications impacting significantly on the cellular lipid phenotype can be further promoted for more in depth analyses

    Target Selection for the SDSS-IV APOGEE-2 Survey

    Full text link
    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing roughly 300,000 stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding upon APOGEE's goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch (RGB) and red clump (RC) stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.Comment: 19 pages, 6 figures. Accepted to A

    KELT-18b: Puffy Planet, Hot Host, Probably Perturbed

    Get PDF
    We report the discovery of KELT-18b, a transiting hot Jupiter in a 2.87-day orbit around the bright ( V = 10.1), hot, F4V star BD+60 1538 (TYC 3865-1173-1). We present follow-up photometry, spectroscopy, and adaptive optics imaging that allow a detailed characterization of the system. Our preferred model fits yield a host stellar temperature of K and a mass of , situating it as one of only a handful of known transiting planets with hosts that are as hot, massive, and bright. The planet has a mass of , a radius of , and a density of , making it one of the most inflated planets known around a hot star. We argue that KELT-18b’s high temperature and low surface gravity, which yield an estimated ∼600 km atmospheric scale height, combined with its hot, bright host, make it an excellent candidate for observations aimed at atmospheric characterization. We also present evidence for a bound stellar companion at a projected separation of ∼1100 au, and speculate that it may have contributed to the strong misalignment we suspect between KELT-18\u27s spin axis and its planet’s orbital axis. The inferior conjunction time is 2457542.524998 ± 0.000416 (BJD TDB ) and the orbital period is 2.8717510 ± 0.0000029 days. We encourage Rossiter–McLaughlin measurements in the near future to confirm the suspected spin–orbit misalignment of this system

    KELT-20b: A Giant Planet With A Period Of P ~ 3.5 Days Transiting The V ~ 7.6 Early A Star HD 185603

    Get PDF
    We report the discovery of KELT-20b, a hot Jupiter transiting a early A star, HD 185603, with an orbital period of days. Archival and follow-up photometry, Gaia parallax, radial velocities, Doppler tomography, and AO imaging were used to confirm the planetary nature of KELT-20b and characterize the system. From global modeling we infer that KELT-20 is a rapidly rotating ( ) A2V star with an effective temperature of K, mass of , radius of , surface gravity of , and age of . The planetary companion has a radius of , a semimajor axis of au, and a linear ephemeris of . We place a upper limit of on the mass of the planet. Doppler tomographic measurements indicate that the planetary orbit normal is well aligned with the projected spin axis of the star ( ). The inclination of the star is constrained to , implying a three-dimensional spin–orbit alignment of . KELT-20b receives an insolation flux of , implying an equilibrium temperature of of ∼2250 K, assuming zero albedo and complete heat redistribution. Due to the high stellar , KELT-20b also receives an ultraviolet (wavelength nm) insolation flux of , possibly indicating significant atmospheric ablation. Together with WASP-33, Kepler-13 A, HAT-P-57, KELT-17, and KELT-9, KELT-20 is the sixth A star host of a transiting giant planet, and the third-brightest host (in V ) of a transiting planet

    Thermal and magnetic properties of integrable spin-1 and spin-3/2 chains with applications to real compounds

    Full text link
    The ground state and thermodynamic properties of spin-1 and spin-3/2 chains are investigated via exactly solved su(3) and su(4) models with physically motivated chemical potential terms. The analysis involves the Thermodynamic Bethe Ansatz and the High Temperature Expansion (HTE) methods. For the spin-1 chain with large single-ion anisotropy, a gapped phase occurs which is significantly different from the valence-bond-solid Haldane phase. The theoretical curves for the magnetization, susceptibility and specific heat are favourably compared with experimental data for a number of spin-1 chain compounds. For the spin-3/2 chain a degenerate gapped phase exists starting at zero external magnetic field. A middle magnetization plateau can be triggered by the single-ion anisotropy term. Overall, our results lend further weight to the applicability of integrable models to the physics of low-dimensional quantum spin systems. They also highlight the utility of the exact HTE method.Comment: 38 pages, 15 figure

    An improved understanding about CO2 EOR and CO2 storage in liquid-rich shale reservoirs

    Get PDF
    During the past decade, enhanced oil recovery (EOR) by CO2 in shale oils has received substantial attention. In shale oil reservoirs, CO2 diffusion into the resident oil has been considered as the dominant interaction between the CO2 in fractures and the oil in the matrices. CO2 diffusion will lead to oil swelling and improvement in oil viscosity. However, despite two-way mass transfer during CO2 EOR in conventional oil reservoirs, one-way mass transfer into shale oils saturated with live oils is controlled by an additional transport mechanism, which is the liberation of light oil components in the form of a gaseous new-phase. This in-situ gas formation could generate considerable swelling, which could improve the oil recovery significantly. This mechanism has been largely overlooked in the past. This study is aimed to better understand the role of this evolving gas phase in improving hydrocarbon recovery. Taking account of Bakken shale oil reservoir data, numerical simulations were performed to identify efficiencies of EOR by CO2 at the laboratory and field scales. Equation of state parameters between CO2 and oil components were adjusted to optimize the calculations and a sensitivity analysis was performed to identify the role of gas formation and consequent EOR efficiencies. At the laboratory scale, in-situ gas formation can increase oil recovery by 20% depending on the amount of gas saturation. Also, the CO2 storage capacity of the shale matrix can be enhanced by 25%, due to CO2 trapping in the gas phase. At the field scale, an additional oil recovery of 9.1% could be attained, which is notably higher than previous studies where this gas evolution mechanism was ignored. Furthermore, the results suggest that a six-weeks huff period would be sufficient to achieve substantial EOR if this new mechanism is incorporated. On the other hand, the produced fluid in the early period was primarily composed of CO2, which would make it available for subsequent cycles. The produced gas of the well under CO2 EOR was used in an adjacent well, which resulted in similar additional oil recovery and hence, impurities in CO2 injection stream would not undermine efficiency of this EOR method. The results of this study, therefore, could potentially be used to substantially improve the evaluations of CO2 EOR in liquid-rich shale reservoirs
    corecore