27,163 research outputs found

    Interaction induced dimerization in zigzag single wall carbon nanotubes

    Full text link
    We derive a low-energy effective model of metallic zigzag carbon nanotubes at half filling. We show that there are three important features characterizing the low-energy properties of these systems: the long-range Coulomb interaction, umklapp scattering and an explicit dimerization generated by interactions. The ratio of the dimerization induced gap and the Mott gap induced by the umklapp interactions is dependent on the radius of the nanotube and can drive the system through a quantum phase transition with SU(2)_1 quantum symmetry. We consider the physical properties of the phases on either side of this transition which should be relevant for realistic nanotubes.Comment: 8 pages, 5 figure

    Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach

    Full text link
    Absorption spectra of small molecular aggregates (oligomers) are considered. The dipole-dipole interaction between the monomers leads to shifts of the oligomer spectra with respect to the monomer absorption. The line-shapes of monomer as well as oligomer absorption depend strongly on the coupling to vibrational modes. Using a recently developed approach [Roden et. al, PRL 103, 058301] we investigate the length dependence of spectra of one-dimensional aggregates for various values of the interaction strength between the monomers. It is demonstrated, that the present approach is well suited to describe the occurrence of the J- and H-bands

    Effective electric field: quantifying the sensitivity of searches for new P,T-odd physics with EuCl3_3\cdot6H2_2O

    Full text link
    Laboratory-scale precision experiments are a promising approach to searching for physics beyond the standard model. Non-centrosymmetric solids offer favorable statistical sensitivity for efforts that search for new fields, whose interactions violate the discrete parity and time-reversal symmetries. One example is the electric Cosmic Axion Spin Precession Experiment (CASPEr-e), which is sensitive to the defining interaction of the QCD axion dark matter with gluons in atomic nuclei. The effective electric field is the parameter that quantifies the sensitivity of such experiments to new physics. We describe the theoretical approach to calculating the effective electric field for non-centrosymmetric sites in ionic insulating solids. We consider the specific example of the EuCl3_3\cdot6H2_2O crystal, which is a particularly promising material. The optimistic estimate of the effective electric field for the 153^{153}Eu isotope in this crystal is 10 MV/cm. The calculation uncertainty is estimated to be two orders of magnitude, dominated by the evaluation of the Europium nuclear Schiff moment

    Archimedes' law and its corrections for an active particle in a granular sea

    Full text link
    We study the origin of buoyancy forces acting on a larger particle moving in a granular medium subject to horizontal shaking and its corrections before fluidization. In the fluid limit Archimedes' law is verified; before the limit memory effects counteract buoyancy, as also found experimentally. The origin of the friction is an excluded volume effect between active particles, which we study more exactly for a random walker in a random environment. The same excluded volume effect is also responsible for the mutual attraction between bodies moving in the granular medium. Our theoretical modeling proceeds via an asymmetric exclusion process, i.e., via a dissipative lattice gas dynamics simulating the position degrees of freedom of a low density granular sea.Comment: 22 pages,5 figure

    On the nature of thumbs

    Get PDF
    Differential Hox gene expression make the thumb specia

    On Nonlinear Dynamics of the Pendulum with Periodically Varying Length

    Full text link
    Dynamic behavior of a weightless rod with a point mass sliding along the rod axis according to periodic law is studied. This is the pendulum with periodically varying length which is also treated as a simple model of child's swing. Asymptotic expressions for boundaries of instability domains near resonance frequencies are derived. Domains for oscillation, rotation, and oscillation-rotation motions in parameter space are found analytically and compared with numerical study. Two types of transitions to chaos of the pendulum depending on problem parameters are investigated numerically.Comment: 8 pages, 8 figure
    corecore