238 research outputs found

    New approaches to the quantitative analysis of craniofacial growth and variation

    Get PDF

    Cranial sutures work collectively to distribute strain throughout the reptile skull

    Get PDF
    The skull is composed of many bones that come together at sutures. These sutures are important sites of growth, and as growth ceases some become fused while others remain patent. Their mechanical behaviour and how they interact with changing form and loadings to ensure balanced craniofacial development is still poorly understood. Early suture fusion often leads to disfiguring syndromes, thus is it imperative that we understand the function of sutures more clearly. By applying advanced engineering modelling techniques, we reveal for the first time that patent sutures generate a more widely distributed, high level of strain throughout the reptile skull. Without patent sutures, large regions of the skull are only subjected to infrequent low-level strains that could weaken the bone and result in abnormal development. Sutures are therefore not only sites of bone growth, but could also be essential for the modulation of strains necessary for normal growth and development in reptiles

    Visualising muscle anatomy using three-dimensional computer models - an example using the head and neck muscles of Sphenodon

    Get PDF
    We demonstrate how the computer-based technique of multi-body dynamics analysis (MDA) can be used to create schematic, but informative three-dimensional (3D) representations of complex muscle anatomy. As an example we provide an overview of the head and neck muscles present in Sphenodon (Diapsida: Lepidosauria: Rhynchocephalia). First a computer model based on micro-computed tomography datasets provides a detailed and anatomically correct three-dimensional (3D) framework to work from. Secondly, muscles are represented by groups of cylinders that can be colour coded as desired. This allows muscle positions, attachment areas, and 3D orientation to be visualised clearly. This method has advantages over imaging techniques such as two-dimensional drawings and permits the form and function of the muscles to be understood in a way that is not always possible with more classical visualisation techniques. Copyright: Palaeontological Association December 2009

    The head and neck muscles associated with feeding in sphenodon (Reptilia: Lepidosauria: Rhynchocephalia)

    Get PDF
    Feeding in Sphenodon, the tuatara of New Zealand, is of interest for several rea-sons. First, the modern animal is threatened by extinction, and some populations are in competition for food with Pacific rats. Second, Sphenodon demonstrates a feeding apparatus that is unique to living amniotes: an enlarged palatine tooth row, acrodont dentition, enlarged incisor-like teeth on the premaxilla, a posterior extension of the dentary and an elongate articular surtace that permits prooral shearing. Third, Spheno-don has a skull with two complete lateral temporal bars and is therefore structurally analogous to the configuration hypothesised for the ancestral diapsid reptile. Further-more, the fossil relatives of Sphenodon demonstrate considerable variation in terms of feeding apparatus and skull shape. Lastly, as Sphenodon is the only extant rhyn-chocephalian it represents a potentially useful reference taxon for both muscle recon-struction in extinct reptile taxa and determination of muscle homology in extant taxa. Here we provide an up-to-date consensus view of osteology and musculature in Sphenodon that is relevant to feeding. Discrepancies within previous descriptions are evaluated and synthesised with new observations. This paper displays the complex muscle arrangement using a range of different imaging techniques and a variety of different angles. This includes photographs, illustrations, schematic diagrams, and microcomputed tomography (micro-CT) slice images. © Palaeontological Association August 2009

    Morphometric maps of bilateral asymmetry in the human humerus: An implementation in the R package morphomap

    Get PDF
    In biological anthropology, parameters relating to cross-sectional geometry are calculated in paired long bones to evaluate the degree of lateralization of anatomy and, by inference, function. Here, we describe a novel approach, newly added to the morphomap R package, to assess the lateralization of the distribution of cortical bone along the entire diaphysis. The sample comprises paired long bones belonging to 51 individuals (10 females and 41 males) from The New Mexico Decedent Image Database with known biological profile, occupational and loading histories. Both males and females show a pattern of right lateralization. In addition, males are more lateralized than females, whereas there is not a significant association between lateralization with occupation and loading history. Body weight, height and long-bone length are the major factors driving the emergence of asymmetry in the humerus, while interestingly, the degree of lateralization decreases in the oldest individuals

    Challenges of achieving good environmental status in the Northeast Atlantic

    Get PDF
    The sustainable exploitation of marine ecosystem services is dependent on achieving and maintaining an adequate ecosystem state to prevent undue deterioration. Within the European Union, the Marine Strategy Framework Directive (MSFD) requires member states to achieve Good Environmental Status (GEnS), specified in terms of 11 descriptors. We analyzed the complexity of social-ecological factors to identify common critical issues that are likely to influence the achievement of GEnS in the Northeast Atlantic (NEA) more broadly, using three case studies. A conceptual model developed using a soft systems approach highlights the complexity of social and ecological phenomena that influence, and are likely to continue to influence, the state of ecosystems in the NEA. The development of the conceptual model raised four issues that complicate the implementation of the MSFD, the majority of which arose in the Pressures and State sections of the model: variability in the system, cumulative effects, ecosystem resilience, and conflicting policy targets. The achievement of GEnS targets for the marine environment requires the recognition and negotiation of trade-offs across a broad policy landscape involving a wide variety of stakeholders in the public and private sectors. Furthermore, potential cumulative effects may introduce uncertainty, particularly in selecting appropriate management measures. There also are endogenous pressures that society cannot control. This uncertainty is even more obvious when variability within the system, e.g., climate change, is accounted for. Also, questions related to the resilience of the affected ecosystem to specific pressures must be raised, despite a lack of current knowledge. Achieving good management and reaching GEnS require multidisciplinary assessments. The soft systems approach provides one mechanism for bringing multidisciplinary information together to look at the problems in a different light

    ‘We are the same as everyone else just with a different and unique backstory’: Identity, belonging and ‘othering’ within education for young people who are ‘looked after’

    Get PDF
    This paper develops understandings of how being publicly identified and consequently labelled as ‘looked after’ can have damaging consequences for young people, particularly in how they are perceived by their peers in the context of schooling. Based on qualitative research in northern England utilising participatory approaches with young people and interviews with support staff, we explore barriers that inhibit young people’s sense of belonging. We highlight how the very processes and practices set up to support the young people can often have unintended consequences by routinely positioning them as Other, before considering the implications for education and schooling in particular

    The importance of accurate muscle modelling for biomechanical analyses: a case study with a lizard skull

    Get PDF
    Computer-based simulation techniques such as multi-body dynamics analysis are becoming increasingly popular in the field of skull mechanics. Multi-body models can be used for studying the relationships between skull architecture, muscle morphology and feeding performance. However, to be confident in the modelling results, models need to be validated against experimental data, and the effects of uncertainties or inaccuracies in the chosen model attributes need to be assessed with sensitivity analyses. Here, we compare the bite forces predicted by a multi-body model of a lizard (Tupinambis merianae) with in vivo measurements, using anatomical data collected from the same specimen. This subject-specific model predicts bite forces that are very close to the in vivo measurements and also shows a consistent increase in bite force as the bite position is moved posteriorly on the jaw. However, the model is very sensitive to changes in muscle attributes such as fibre length, intrinsic muscle strength and force orientation, with bite force predictions varying considerably when these three variables are altered. We conclude that accurate muscle measurements are crucial to building realistic multi-body models and that subject-specific data should be used whenever possible.Flora Gröning, Marc E. H. Jones, Neil Curtis, Anthony Herrel, Paul O'Higgins, Susan E. Evans and Michael J. Faga
    • 

    corecore