39 research outputs found

    Met exon 14 skipping: A case study for the detection of genetic variants in cancer driver genes by deep learning

    Get PDF
    Background: Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable. Methods: We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms. Results: The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion. Conclusions: Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool

    Convergent and parallel evolution in life habit of the scallops (Bivalvia: Pectinidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We employed a phylogenetic framework to identify patterns of life habit evolution in the marine bivalve family Pectinidae. Specifically, we examined the number of independent origins of each life habit and distinguished between convergent and parallel trajectories of life habit evolution using ancestral state estimation. We also investigated whether ancestral character states influence the frequency or type of evolutionary trajectories.</p> <p>Results</p> <p>We determined that temporary attachment to substrata by byssal threads is the most likely ancestral condition for the Pectinidae, with subsequent transitions to the five remaining habit types. Nearly all transitions between life habit classes were repeated in our phylogeny and the majority of these transitions were the result of parallel evolution from byssate ancestors. Convergent evolution also occurred within the Pectinidae and produced two additional gliding clades and two recessing lineages. Furthermore, our analysis indicates that byssal attaching gave rise to significantly more of the transitions than any other life habit and that the cementing and nestling classes are only represented as evolutionary outcomes in our phylogeny, never as progenitor states.</p> <p>Conclusions</p> <p>Collectively, our results illustrate that both convergence and parallelism generated repeated life habit states in the scallops. Bias in the types of habit transitions observed may indicate constraints due to physical or ontogenetic limitations of particular phenotypes.</p

    Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice.

    Get PDF
    It is known that transient receptor potential ankyrin 1 (TRPA1) channels, expressed by nociceptors, contribute to neuropathic pain. Here we show that TRPA1 is also expressed in Schwann cells. We found that in mice with partial sciatic nerve ligation, TRPA1 silencing in nociceptors attenuated mechanical allodynia, without affecting macrophage infiltration and oxidative stress, whereas TRPA1 silencing in Schwann cells reduced both allodynia and neuroinflammation. Activation of Schwann cell TRPA1 evoked NADPH oxidase 1 (NOX1)-dependent H2O2 release, and silencing or blocking Schwann cell NOX1 attenuated nerve injury-induced macrophage infiltration, oxidative stress and allodynia. Furthermore, the NOX2-dependent oxidative burst, produced by macrophages recruited to the perineural space activated the TRPA1-NOX1 pathway in Schwann cells, but not TRPA1 in nociceptors. Schwann cell TRPA1 generates a spatially constrained gradient of oxidative stress, which maintains macrophage infiltration to the injured nerve, and sends paracrine signals to activate TRPA1 of ensheathed nociceptors to sustain mechanical allodynia

    SUMO1 in human sperm:new targets,role in motility and morphology and relationship with DNA damage.

    Get PDF
    In studies carried out previously, we demonstrated that small ubiquitin-like modifier 1 (SUMO1) is associated with poor sperm motility when evaluated with a protocol that reveals mostly SUMO1-ylated live sperm. Recently, with another protocol, it has been demonstrated that SUMO is expressed in most sperm and is related to poor morphology and motility, suggesting that sumoylation may have multiple roles depending on its localisation and targets. We show herein, by confocal microscopy and co-immunoprecipitation, that dynamin-related protein 1 (DRP1), Ran GTPase-activating protein 1 (RanGAP1) and Topoisomerase IIα, SUMO1 targets in somatic and/or germ cells, are SUMO1-ylated in mature human spermatozoa. DRP1 co-localises with SUMO1 in the mid-piece, whereas RanGAP1 and Topoisomerase IIα in the post-acrosomal region of the head. Both SUMO1 expression and co-localisation with the three proteins were significantly higher in morphologically abnormal sperm, suggesting that sumoylation represents a marker of defective sperm. DRP1 sumoylation at the mid-piece level was higher in the sperm of asthenospermic men. As in somatic cells, DRP1 sumoylation is associated with mitochondrial alterations, this protein may represent the link between SUMO and poor motility. As SUMO pathways are involved in responses to DNA damage, another aim of our study was to investigate the relationship between sumoylation and sperm DNA fragmentation (SDF). By flow cytometry, we demonstrated that SUMO1-ylation and SDF are correlated (r=0.4,P&lt;0.02,n=37) and most sumoylated sperm shows DNA damage in co-localisation analysis. When SDF was induced by stressful conditions (freezing and thawing and oxidative stress), SUMO1-ylation increased. Following freezing and thawing, SUMO1–Topoisomerase IIα co-localisation and co-immunoprecipitation increased, suggesting an involvement in the formation/repair of DNA breakage.</jats:p
    corecore