28 research outputs found

    Influence of Resolution in Irrigated Area Mapping and Area Estimation

    Get PDF
    The overarching goal of this paper was to determine how irrigated areas change with resolution (or scale) of imagery. Specific objectives investigated were to (a) map irrigated areas using four distinct spatial resolutions (or scales), (b) determine how irrigated areas change with resolutions, and (c) establish the causes of differences in resolution-based irrigated areas. The study was conducted in the very large Krishna River basin (India), which has a high degree of formal contiguous, and informal fragmented irrigated areas. The irrigated areas were mapped using satellite sensor data at four distinct resolutions: (a) NOAA AVHRR Pathfinder 10,000 m, (b) Terra MODIS 500 m, (c) Terra MODIS 250 m, and (d) Landsat ETM+ 30 m. The proportion of irrigated areas relative to Landsat 30 m derived irrigated areas (9.36 million hectares for the Krishna basin) were (a) 95 percent using MODIS 250 m, (b) 93 percent using MODIS 500 m, and (c) 86 percent using AVHRR 10,000 m. In this study, it was found that the precise location of the irrigated areas were better established using finer spatial resolution data. A strong relationship (R2 = 0.74 to 0.95) was observed between irrigated areas determined using various resolutions. This study proved the hypotheses that “the finer the spatial resolution of the sensor used, greater was the irrigated area derived,” since at finer spatial resolutions, fragmented areas are detected better. Accuracies and errors were established consistently for three classes (surface water irrigated, ground water/conjunctive use irrigated, and nonirrigated) across the four resolutions mentioned above. The results showed that the Landsat data provided significantly higher overall accuracies (84 percent) when compared to MODIS 500 m (77 percent), MODIS 250 m (79 percent), and AVHRR 10,000 m (63 percent)

    Sub-pixel Area Calculation Methods for Estimating Irrigated Areas

    Get PDF
    The goal of this paper was to develop and demonstrate practical methods forcomputing sub-pixel areas (SPAs) from coarse-resolution satellite sensor data. Themethods were tested and verified using: (a) global irrigated area map (GIAM) at 10-kmresolution based, primarily, on AVHRR data, and (b) irrigated area map for India at 500-mbased, primarily, on MODIS data. The sub-pixel irrigated areas (SPIAs) from coarse-resolution satellite sensor data were estimated by multiplying the full pixel irrigated areas(FPIAs) with irrigated area fractions (IAFs). Three methods were presented for IAFcomputation: (a) Google Earth Estimate (IAF-GEE); (b) High resolution imagery (IAF-HRI); and (c) Sub-pixel de-composition technique (IAF-SPDT). The IAF-GEE involvedthe use of “zoom-in-views” of sub-meter to 4-meter very high resolution imagery (VHRI)from Google Earth and helped determine total area available for irrigation (TAAI) or netirrigated areas that does not consider intensity or seasonality of irrigation. The IAF-HRI isa well known method that uses finer-resolution data to determine SPAs of the coarser-resolution imagery. The IAF-SPDT is a unique and innovative method wherein SPAs aredetermined based on the precise location of every pixel of a class in 2-dimensionalbrightness-greenness-wetness (BGW) feature-space plot of red band versus near-infraredband spectral reflectivity. The SPIAs computed using IAF-SPDT for the GIAM was within2 % of the SPIA computed using well known IAF-HRI. Further the fractions from the 2 methods were significantly correlated. The IAF-HRI and IAF-SPDT help to determine annualized or gross irrigated areas (AIA) that does consider intensity or seasonality (e.g., sum of areas from season 1, season 2, and continuous year-round crops). The national census based irrigated areas for the top 40 irrigated nations (which covers about 90% of global irrigation) was significantly better related (and had lesser uncertainties and errors) when compared to SPIAs than FPIAs derived using 10-km and 500-m data. The SPIAs were closer to actual areas whereas FPIAs grossly over-estimate areas. The research clearly demonstrated the value and the importance of sub-pixel areas as opposed to full pixel areas and presented 3 innovative methods for computing the same

    Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome.

    Get PDF
    Abstract. Land use, land use change, and forestry accounted for two-thirds of Brazil?s greenhouse gas emissions profile in 2005. Amazon deforestation has declined by more than 80% over the past decade, yet Brazil?s forests extend beyond the Amazon biome. Rapid expansion of cropland in the neighboring Cerrado biome has the potential to undermine climate mitigation efforts if emissions from dry forest and woodland conversion negate some of the benefits of avoided Amazon deforestation. Here, we used satellite data on cropland expansion, forest cover, and vegetation carbon stocks to estimate annual gross forest carbon emissions from cropland expansion in the Cerrado biome. Nearly half of the Cerrado met Brazil?s definition of forest cover in 2000 (?0.5 ha with ?10% canopy cover). In areas of established crop production, conversion of both forest and non-forest Cerrado formations for cropland declined during 2003?2013. However, forest carbon emissions from cropland expansion increased over the past decade in Matopiba, a new frontier of agricultural production that includes portions of MaranhĂŁo, Tocantins, PiauĂ­, and Bahia states. Gross carbon emissions from cropland expansion in the Cerrado averaged 16.28 Tg C yr1 between 2003 and 2013, with forest-to-cropland conversion accounting for 29% of emissions. The fraction of forest carbon emissions from Matopiba was much higher; between 2010?2013, large-scale cropland conversion in Matopiba contributed 45% of total Cerrado forest carbon emissions. Carbon emissions from Cerrado-tocropland transitions offset 5%?7% of the avoided emissions from reduced Amazon deforestation rates during 2011?2013. Comprehensive national estimates of forest carbon fluxes, including all biomes, are critical to detect cross-biome leakage within countries and achieve climate mitigation targets to reduce emissions from land use, land use change, and forestry

    Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia

    No full text
    Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce sustainable palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance is unclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009, forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident active fire detections. Interannual variability in fire detections was strongly influenced by El Niño and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Niño events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75 % and 66 % lower on certified plantations than noncertified plantations during the 2009 and 2015 El Niño events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero deforestation

    Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon

    Get PDF
    Agricultural suitability maps are a key input for land use zoning and projections of cropland expansion. Suitability assessments typically consider edaphic conditions, climate, crop characteristics, and sometimes incorporate accessibility to transportation and market infrastructure. However, correct weighting among these disparate factors is challenging, given rapid development of new crop varieties, irrigation, and road networks, as well as changing global demand for agricultural commodities. Here, we compared three independent assessments of cropland suitability to spatial and temporal dynamics of agricultural expansion in the Brazilian state of Mato Grosso during 2001?2012. We found that areas of recent cropland expansion identified using satellite data were generally designated as low to moderate suitability for rainfed crop production. Our analysis highlighted the abrupt nature of suitability boundaries, rather than smooth gradients of agricultural potential, with little additional cropland expansion beyond the extent of the flattest areas (0?2% slope). Satellite-based estimates of the interannual variability in the use of existing crop areas also provided an alternate means to assess suitability. On average, cropland areas in the Cerrado biome had higher utilization (84%) than croplands in the Amazon region of northern Mato Grosso (74%). Areas of more recent expansion had lower utilization than croplands established before 2002, providing empirical evidence for lower suitability or alternative management strategies (e.g., pasture?soya rotations) for lands undergoing more recent land use transitions. This unplanted reserve constitutes a large area of potentially available cropland (PAC) without further expansion, within the management limits imposed for pest management and fallow cycles. Using two key constraints on future cropland expansion, slope and restrictions on further deforestation of Amazon or Cerrado vegetation, we found little available flat land for further legal expansion of crop production in Mato Grosso. Dynamics of cropland expansion from more than a decade of satellite observations indicated narrow ranges of suitability criteria, restricting PAC under current policy conditions, and emphasizing the advantages of field-scale information to assess suitability and utilization.201

    Irrigated areas of India derived using MODIS 500 m time series for the years 2001-2003

    No full text
    The overarching goal of this research was to develop methods and protocols for mapping irrigated areas using a Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m time series, to generate irrigated area statistics, and to compare these with ground- and census-based statistics. The primary mega-file data-cube (MFDC), comparable to a hyper-spectral data cube, used in this study consisted of 952 bands of data in a single file that were derived from MODIS 500 m, 7-band reflectance data acquired every 8-days during 2001-2003. The methods consisted of (a) segmenting the 952-band MFDC based not only on elevation-precipitation-temperature zones but on major and minor irrigated command area boundaries obtained from India's Central Board of Irrigation and Power (CBIP), (b) developing a large ideal spectral data bank (ISDB) of irrigated areas for India, (c) adopting quantitative spectral matching techniques (SMTs) such as the spectral correlation similarity (SCS) R2-value, (d) establishing a comprehensive set of protocols for class identification and labeling, and (e) comparing the results with the National Census data of India and field-plot data gathered during this project for determining accuracies, uncertainties and errors. The study produced irrigated area maps and statistics of India at the national and the subnational (e.g., state, district) levels based on MODIS data from 2001-2003. The Total Area Available for Irrigation (TAAI) and Annualized Irrigated Areas (AIAs) were 113 and 147 million hectares (MHa), respectively. The TAAI does not consider the intensity of irrigation, and its nearest equivalent is the net irrigated areas in the Indian National Statistics. The AIA considers intensity of irrigation and is the equivalent of "irrigated potential utilized (IPU)? reported by India's Ministry of Water Resources (MoWR). The field-plot data collected during this project showed that the accuracy of TAAI classes was 88% with a 12% error of omission and 32% of error of commission. Comparisons between the AIA and IPU produced an R2-value of 0.84. However, AIA was consistently higher than IPU. The causes for differences were both in traditional approaches and remote sensing. The causes of uncertainties unique to traditional approaches were (a) inadequate accounting of minor irrigation (groundwater, small reservoirs and tanks), (b) unwillingness to share irrigated area statistics by the individual Indian states because of their stakes, (c) absence of comprehensive statistical analyses of reported data, and (d) subjectivity involved in observation-based data collection process. The causes of uncertainties unique to remote sensing approaches were (a) irrigated area fraction estimate and related sub-pixel area computations and (b) resolution of the imagery. The causes of uncertainties common in both traditional and remote sensing approaches were definitions and methodological issues

    Global irrigated area maps (GIAM) and statistics using remote sensing

    No full text
    In Thenkabail, P. S.; Lyon, J. G.; Turral, H.; Biradar, C. M. (Eds.). Remote sensing of global croplands for food security. Boca Raton, FL, USA: CRC PressTaylor & Francis Series in Remote Sensing Application

    Influence of resolution in irrigated area mapping and area estimation

    No full text
    The overarching goal of this paper was to determine how irrigated areas change with resolution (or scale) of imagery. Specific objectives investigated were to (a) map irrigated areas using four distinct spatial resolutions (or scales), (b) determine how irrigated areas change with resolutions, and (c) establish the causes of differences in resolution-based irrigated areas. The study was conducted in the very large Krishna River basin (India), which has a high degree of formal contiguous, and informal fragmented irrigated areas. The irrigated areas were mapped using satellite sensor data at four distinct resolutions: (a) NOAA AVHRR Pathfinder 10,000 m, (b) Terra MODIS 500 m, (c) Terra MODIS 250 m, and (d) Landsat ETM 30 m. The proportion of irrigated areas relative to Landsat 30 m derived irrigated areas (9.36 million hectares for the Krishna basin) were (a) 95 percent using MODIS 250 m, (b) 93 percent using MODIS 500 m, and (c) 86 percent using AVHRR 10,000 m. In this study, it was found that the precise location of the irrigated areas were better established using finer spatial resolution data. A strong relationship (R2 0.74 to 0.95) was observed between irrigated areas determined using various resolutions. This study proved the hypotheses that "the finer the spatial resolution of the sensor used, greater was the irrigated area derived,? since at finer spatial resolutions, fragmented areas are detected better. Accuracies and errors were established consistently for three classes (surface water irrigated, ground water/conjunctive use irrigated, and nonirrigated) across the four resolutions mentioned above. The results showed that the Landsat data provided significantly higher overall accuracies (84 percent) when compared to MODIS 500 m (77 percent), MODIS 250 m (79 percent), and AVHRR 10,000 m (63 percent)

    Water productivity mapping methods using remote sensing

    No full text
    The goal of this paper was to develop methods and protocols for water productivity mapping (WPM) using remote sensing data at multiple resolutions and scales in conjunction with field-plot data. The methods and protocols involved three broad categories: (a) Crop Productivity Mapping (CPM) (kg/m2); (b) Water Use (evapotranspiration) Mapping (WUM)(m3/m2); and (c) Water Productivity Mapping (WPM) (kg/m3). First, the CPMs were determined using remote sensing by: (i) Mapping crop types; (ii) modeling crop yield; and (iii) extrapolating models to larger areas. Second, WUM were derived using the Simplified Surface Energy Balance (SSEB) model. Finally, WPMs were produced by dividing CPMs and WUMs. The paper used data from Quickbird 2.44m, Indian Remote Sensing (IRS) Resoursesat-1 23.5m, Landsat-7 30m, and Moderate Resolution Imaging Spectroradiometer (MODIS) 250m and 500m, to demonstrate the methods for mapping water productivity (WP). In terms of physical water productivity (kilogram of yield produced per unit of water delivered), wheat crop had highest water productivity of 0.60 kg/m3 (WP), followed by rice with 0.5 kg/m3, and cotton with 0.42 kg/m3. In terms of economic value (dollar per unit of water delivered), cotton ranked highest at 0.5/m3followedbywheatwith 0.5/m3 followed by wheat with 0.33/m3 and rice at $ 0.10/m3. The study successfully delineated the areas of low and high WP. An overwhelming proportion (50+%) of the irrigated areas were under low WP for all crops with nly about 10% area in high WP

    A history of irrigated areas of the world

    No full text
    In Thenkabail, P. S.; Lyon, J. G.; Turral, H.; Biradar, C. M. (Eds.). Remote sensing of global croplands for food security. Boca Raton, FL, USA: CRC PressTaylor & Francis Series in Remote Sensing Application
    corecore