70 research outputs found

    PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease

    Get PDF
    Overexpression of HOXA/MEIS1/PBX3 homeobox genes is the hallmark of mixed lineage leukemia (MLL)-rearranged acute myeloid leukemia (AML). HOXA9 and MEIS1 are considered to be the most critical targets of MLL fusions and their co-expression rapidly induces AML. MEIS1 and PBX3 are not individually able to transform cells and were therefore hypothesized to function as cofactors of HOXA9. However, in this study we demonstrate that co-expression of PBX3 and MEIS1 (PBX3/MEIS1), without ectopic expression of a HOX gene, is sufficient for transformation of normal mouse hematopoietic stem/progenitor cells in vitro. Moreover, PBX3/MEIS1 overexpression also caused AML in vivo, with a leukemic latency similar to that caused by forced expression of MLL-AF9, the most common form of MLL fusions. Furthermore, gene expression profiling of hematopoietic cells demonstrated that PBX3/MEIS1 overexpression, but not HOXA9/MEIS1, HOXA9/PBX3 or HOXA9 overexpression, recapitulated the MLL-fusion-mediated core transcriptome, particularly upregulation of the endogenous Hoxa genes. Disruption of the binding between MEIS1 and PBX3 diminished PBX3/MEIS1-mediated cell transformation and HOX gene upregulation. Collectively, our studies strongly implicate the PBX3/MEIS1 interaction as a driver of cell transformation and leukemogenesis, and suggest that this axis may play a critical role in the regulation of the core transcriptional programs activated in MLL-rearranged and HOX-overexpressing AML. Therefore, targeting the MEIS1/PBX3 interaction may represent a promising therapeutic strategy to treat these AML subtypes

    Pre-surgical mapping of eloquent cortex for paediatric epilepsy surgery candidates: Evidence from a review of advanced functional neuroimaging

    Get PDF
    Purpose: A review of all published evidence for mapping eloquent (motor, language and memory) cortex using advanced functional neuroimaging (functional magnetic resonance imaging [fMRI] and magnetoencephalography [MEG]) for paediatric epilepsy surgery candidates has not been conducted previously. Research in this area has predominantly been in adult populations and applicability of these techniques to paediatric populations is less established. Methods: A review was performed using an advanced systematic search and retrieval of all published papers examining the use of functional neuroimaging for paediatric epilepsy surgery candidates. Results: Of the 2,724 papers retrieved, 34 met the inclusion criteria. Total paediatric participants identified were 353 with an age range of 5 months-19 years. Sample sizes and comparisons with alternative investigations to validate techniques are small and variable paradigms are used. Sensitivity 0.72 (95% CI 0.52-0.86) and specificity 0.60 (95% CI 0.35-0.92) values with a Positive Predictive Value of 74% (95% CI 61-87) and a Negative Predictive Value of 65% (95% CI 52-78) for fMRI language lateralisation with validation, were obtained. Retrieved studies indicate evidence that both fMRI and MEG are able to provide information lateralising and localising motor and language functions. Conclusions: A striking finding of the review is the paucity of studies (n = 34) focusing on the paediatric epilepsy surgery population. For children, it remains unclear which language and memory paradigms produce optimal activation and how these should be quantified in a statistically robust manner. Consensus needs to be achieved for statistical analyses and the uniformity and yield of language, motor and memory paradigms. Larger scale studies are required to produce patient series data which clinicians may refer to interpret results objectively. If functional imaging techniques are to be the viable alternative for pre-surgical mapping of eloquent cortex for children, paradigms and analyses demonstrating concordance with independent measures must be developed

    A New Class of Safe Oligosaccharide Polymer Therapy To Modify the Mucus Barrier of Chronic Respiratory Disease

    Get PDF
    The host- and bacteria-derived extracellular polysaccharide coating of the lung is a considerable challenge in chronic respiratory disease and is a powerful barrier to effective drug delivery. A low molecular weight 12–15-mer alginate oligosaccharide (OligoG CF-5/20), derived from plant biopolymers, was shown to modulate the polyanionic components of this coating. Molecular modeling and Fourier transform infrared spectroscopy demonstrated binding between OligoG CF-5/20 and respiratory mucins. Ex vivo studies showed binding induced alterations in mucin surface charge and porosity of the three-dimensional mucin networks in cystic fibrosis (CF) sputum. Studies in Humans showed that OligoG CF-5/20 is safe for inhalation in CF patients with effective lung deposition and modifies the viscoelasticity of CF-sputum. OligoG CF-5/20 is the first inhaled polymer therapy, represents a novel mechanism of action and therapeutic approach for the treatment of chronic respiratory disease, and is currently in Phase IIb clinical trials for the treatment of CF

    miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia

    Get PDF
    MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy

    Increased plasma thioredoxin levels in patients with sepsis: positive association with macrophage migration inhibitory factor.

    Get PDF
    PURPOSE: To establish the relationship between plasma levels of thioredoxin (Trx) and macrophage migration inhibitory factor (MIF) in systemic inflammatory stress syndrome (SIRS)/sepsis. METHODS: Enzyme-linked immunosorbent assay measurements of Trx, MIF, IL-6, -8, and -10 and enzyme-linked fluorescent assay determination of procalcitonin (PCT) in plasma from patients with SIRS/sepsis, neutropenic sepsis, healthy volunteers and pre-oesophagectomy patients. RESULTS: Thioredoxin was significantly higher in SIRS/sepsis patients [101.3 ng ml(−1), interquartile range (IQR) 68.7–155.6, n = 32] compared with that in healthy controls (49.5 ng ml(−1), IQR 31.4–71.1, P < 0.001, n = 17) or pre-oesophagectomy patients (40.5 ng ml(−1), IQR 36.9–63.2, P < 0.01, n = 7), but was not raised in neutropenics (n = 5). MIF levels were also significantly higher in SIRS/sepsis patients (12.1 ng ml(−1), IQR 9.5–15.5, n = 35), but not in the neutropenic group, when compared with healthy controls (9.3 ng ml(−1), IQR 7.3–10.7, P < 0.01, n = 20). Trx levels correlated, positively, with MIF levels and APACHE II scores. Plasma levels of IL-6, -8 and -10 and PCT increased significantly in patients with SIRS/sepsis (P < 0.001) and with neutropenic sepsis, but did not correlate with Trx or MIF levels. CONCLUSION: Plasma levels of Trx, MIF, IL-6, -8, -10 and PCT were raised in patients with SIRS/sepsis. Comparisons between mediators suggest a unique correlation of Trx with MIF. Moreover, Trx and MIF differed from cytokines and PCT in that levels were significantly lower in patients with neutropenia compared with the main SIRS/sepsis group. By contrast, IL-8 and PCT levels were significantly greater in the neutropenic patient group. The link between MIF and Trx highlighted in this study has implications for future investigations into the pathogenesis of SIRS/sepsis
    • …
    corecore