248 research outputs found

    Effects of Noise Reduction and Care Clustering on Quality of Sleep in Critical Care Patients

    Get PDF
    Introduction: Sleep deprivation has detrimental effects on critical patients’ health. A lack of sleep can affect multiple body systems. There are nursing interventions that can reduce sleep deprivation. However, there is inconclusive evidence on how to properly assess sleep deprivation and implement sleep promoting nursing interventions in clinical practice. Purpose: The purpose of this literature review is to examine the effects of noise reduction and nursing care clustering on improving the quality of patient sleep in the critical care setting. Methods: This literature review was conducted using 10 sources published within the last 5 years. Inclusion criteria consisted of articles about the effects of noise, quality of sleep, and implementation of nurse care clustering on various critical care populations. The 6 databases used for this research were UpToDate, CINAHL, PubMed, PsycInfo, Proquest, and CCForum. This research concentrated on examining articles containing nursing interventions for noise reduction and care clustering related to quality of sleep. Results: Noise has a negative effect on sleep by causing more arousals/awakenings, which greatly impacts the restorative function of the process. Noise is not the only sleep disturbing factor, but it has been shown to be significant. Some noise sources cannot be eliminated due to safety reasons, but interventions exist to help counteract the effects of noise. Nursing care interventions are as disruptive to sleep as noise. 13.9% of nursing interruptions could be safely omitted, and nurses should cluster care to promote sleep. Interventions to prevent sleep disruption can be practical in routine nursing, but nurses are less likely to implement them at night because prioritizing care clustering can require more time and effort. Discussion: Sleep deprivation causes major health concerns in critical care patients. Noise and nursing care interventions have been found to cause equal disruptions in sleep. Noise reduction and care clustering have been observed to reduce sleep deprivation. Further evidence is needed on how to effectively and practically implement these nursing interventions into daily nursing practice

    Chromospheric Velocities of a C-class Flare

    Full text link
    We use high spatial and temporal resolution observations from the Swedish Solar Telescope to study the chromospheric velocities of a C-class flare originating from active region NOAA 10969. A time-distance analysis is employed to estimate directional velocity components in H-alpha and Ca II K image sequences. Also, imaging spectroscopy has allowed us to determine flare-induced line-of-sight velocities. A wavelet analysis is used to analyse the periodic nature of associated flare bursts. Time-distance analysis reveals velocities as high as 64 km/s along the flare ribbon and 15 km/s perpendicular to it. The velocities are very similar in both the H-alpha and Ca II K time series. Line-of-sight H-alpha velocities are red-shifted with values up to 17 km/s. The high spatial and temporal resolution of the observations have allowed us to detect velocities significantly higher than those found in earlier studies. Flare bursts with a periodicity of approximately 60 s are also detected. These bursts are similar to the quasi-periodic oscillations observed at hard X-ray and radio wavelength data. Some of the highest velocities detected in the solar atmosphere are presented. Line-of-sight velocity maps show considerable mixing of both the magnitude and direction of velocities along the flare path. A change in direction of the velocities at the flare kernel has also been detected which may be a signature of chromospheric evaporation.Comment: Accepted for publication in Astronomy and Astrophysics, 5 figure

    TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)

    Get PDF
    N,N,N’,N’‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron‐catalysis, finding application in reactions as diverse as cross‐coupling, C‐H activation and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. Key is the initial formation of TMEDA‐iron(II) alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)‐alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis

    Direct Metal Laser-sintered Stainless Steel: Comparison Of Microstructure And Hardness Between Different Planes

    Get PDF
    Microstructural analysis and micro-hardness measurements were performed on different planes of 316L stainless steel fabricated by direct metal laser sintering (DMLS) technique. A fine cellular network was observed within the steel microstructure, where morphology of most cells changed from columnar on XZ-plane (vertical section) to equiaxed on XY-plane (horizontal section). Correspondingly, morphology of most grains was found to alter from columnar for the XZ-plane to equiaxed in the case of the XY-plane. Moreover, X-ray diffraction (XRD) analysis revealed a fully austenitic structure for both the planes. The average micro-hardness value for the XZ-plane and XY-plane was insignificantly (≈ 3%) different, which was attributed to the random grain orientation observed on both the planes. However, the average micro-hardness of the DMLS-fabricated 316L stainless steel in this contribution was approximately 25% higher than that of the as-cast one

    Experimental Measurement Of Residual Stress And Distortion In Additively Manufactured Stainless Steel Components With Various Dimensions

    Get PDF
    Disk-shaped 316L stainless steel parts with various diameters and heights were additively manufactured using a direct metal laser sintering (DMLS) technique. Neutron diffraction was used to profile the residual stresses in the samples before and after removal of the build plate and support structures. Moreover, distortion level of the parts before and after the removal was quantified using a coordinate measuring machine (CMM). Large tensile in-plane stresses (up to ≈ 400 MPa) were measured near the as-built disk top surfaces, where the stress magnitude decreased from the disk center to the edges. The stress gradient was steeper for the disks with smaller diameters and heights. Following the removal of the build plate and support structures, the magnitude of the in-plane residual stresses decreased dramatically (up to 330 MPa) whereas the axial stress magnitude did not change significantly. The stress relaxation caused the disks to distort, where the distortion metric was higher for the disks with smaller diameters and heights. The distribution of the residual stresses revealed a marked breakdown of self-similarity in their distribution even comparing disk-shaped samples that were fabricated under identical printing parameters; the stress field profiles were not linearly scaled as a function of height and diameter

    Imaging Spectroscopy of a White-Light Solar Flare

    Get PDF
    We report observations of a white-light solar flare (SOL2010-06-12T00:57, M2.0) observed by the Helioseismic Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) and the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The HMI data give us the first space-based high-resolution imaging spectroscopy of a white-light flare, including continuum, Doppler, and magnetic signatures for the photospheric FeI line at 6173.34{\AA} and its neighboring continuum. In the impulsive phase of the flare, a bright white-light kernel appears in each of the two magnetic footpoints. When the flare occurred, the spectral coverage of the HMI filtergrams (six equidistant samples spanning \pm172m{\AA} around nominal line center) encompassed the line core and the blue continuum sufficiently far from the core to eliminate significant Doppler crosstalk in the latter, which is otherwise a possibility for the extreme conditions in a white-light flare. RHESSI obtained complete hard X-ray and \Upsilon-ray spectra (this was the first \Upsilon-ray flare of Cycle 24). The FeI line appears to be shifted to the blue during the flare but does not go into emission; the contrast is nearly constant across the line profile. We did not detect a seismic wave from this event. The HMI data suggest stepwise changes of the line-of-sight magnetic field in the white-light footpoints.Comment: 14 pages, 7 figures, Accepted by Solar Physic
    corecore