250 research outputs found
Programming language specification and implementation
The specification of a programming language is a special case of the specification of software in general. This paper discusses the relation between semantics and implementation, or specification and program, using two very different languages for illustration. First, we consider small fragments of a specification of preliminary Ada, and show that what was considered a specification in VDM in 1980 now looks much like an implementation in a functional language. Also, we discuss how a formal specification may be valuable even though seen from a purely formal point of view it is flawed. Second, we consider the simple language of spreadsheet formulas and give a complete specification. We show that nondeterminism in the specification may reflect run-time nondeterminism, but also underspecification, that is, implementation-time design choices. Although specification nondeterminism may appear at different binding-times there is no conventional way to distinguish these. We also consider a cost semantics and find that the specification may need to contain some “artificial” nondeterminism for underspecification
On opportunistic software reuse
The availability of open source assets for almost all imaginable domains has led the software industry toopportunistic design-an approach in which people develop new software systems in an ad hoc fashion by reusing and combining components that were not designed to be used together. In this paper we investigate this emerging approach. We demonstrate the approach with an industrial example in whichNode.jsmodules and various subsystems are used in an opportunistic way. Furthermore, to study opportunistic reuse as a phenomenon, we present the results of three contextual interviews and a survey with reuse practitioners to understand to what extent opportunistic reuse offers improvements over traditional systematic reuse approaches.Peer reviewe
The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity
Radial transport in a porous medium with Dirichlet, Neumann and Robin-type inhomogeneous boundary values and general initial data: analytical solution and evaluation
C. PRESL) at the transcriptional level.
This paper investigates differences in gene expression among the two Thlaspi caerulescens ecotypes La Calamine (LC) and Lellingen (LE) that have been shown to differ in metal tolerance and metal uptake. LC originates from a metalliferous soil and tolerates higher metal concentrations than LE which originates from a non-metalliferous soil. The two ecotypes were treated with different levels of zinc in solution culture, and differences in gene expression were assessed through application of a cDNA microarray consisting of 1,700 root and 2,700 shoot cDNAs. Hybridisation of root and shoot cDNA from the two ecotypes revealed a total of 257 differentially expressed genes. The regulation of selected genes was verified by quantitative reverse transcriptase polymerase chain reaction. Comparison of the expression profiles of the two ecotypes suggests that LC has a higher capacity to cope with reactive oxygen species and to avoid the formation of peroxynitrite. Furthermore, increased transcripts for the genes encoding for water channel proteins could explain the higher Zn tolerance of LC compared to LE. The higher Zn tolerance of LC was reflected by a lower expression of the genes involved in disease and defence mechanisms. The results of this study provide a valuable set of data that may help to improve our understanding of the mechanisms employed by plants to tolerate toxic concentrations of metal in the soil
‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC
- …
