1,949 research outputs found
Drifting diffusion on a circle as continuous limit of a multiurn Ehrenfest model
We study the continuous limit of a multibox Erhenfest urn model proposed
before by the authors. The evolution of the resulting continuous system is
governed by a differential equation, which describes a diffusion process on a
circle with a nonzero drifting velocity. The short time behavior of this
diffusion process is obtained directly by solving the equation, while the long
time behavior is derived using the Poisson summation formula. They reproduce
the previous results in the large (number of boxes) limit. We also discuss
the connection between this diffusion equation and the Schrdinger
equation of some quantum mechanical problems.Comment: 4 pages prevtex4 file, 1 eps figur
Length-weight relationships of fish from the lagoon of New Caledonia
Length-weight relationships of 335 species of fish of New Caledonia, belonging to 65 families of coral reef fishes, were computed (80%) or assembled from the literature (20% of all cases) to facilitate, among other things, estimation of coral reef fish biomass from visual census
Pressure Dependence of Fragile-to-Strong Transition and a Possible Second Critical Point in Supercooled Confined Water
By confining water in nano-pores of silica glass, we can bypass the
crystallization and study the pressure effect on the dynamical behavior in
deeply supercooled state using neutron scattering. We observe a clear evidence
of a cusp-like fragile-to-strong (F-S) dynamic transition. Here we show that
the transition temperature decreases steadily with an increasing pressure,
until it intersects the homogenous nucleation temperature line of bulk water at
a pressure of 1600 bar. Above this pressure, it is no longer possible to
discern the characteristic feature of the F-S transition. Identification of
this end point with the possible second critical point is discussed.Comment: 4 pages, 3 figure
Distances and classification of amino acids for different protein secondary structures
Window profiles of amino acids in protein sequences are taken as a
description of the amino acid environment. The relative entropy or
Kullback-Leibler distance derived from profiles is used as a measure of
dissimilarity for comparison of amino acids and secondary structure
conformations. Distance matrices of amino acid pairs at different conformations
are obtained, which display a non-negligible dependence of amino acid
similarity on conformations. Based on the conformation specific distances
clustering analysis for amino acids is conducted.Comment: 15 pages, 8 figure
Length-weight relationships of fish from the lagoon of New Caledonia
Reef fisheries, Length-weight relationships, Lagoons, New Caledonia,
Learning To Pay Attention To Mistakes
In convolutional neural network based medical image segmentation, the
periphery of foreground regions representing malignant tissues may be
disproportionately assigned as belonging to the background class of healthy
tissues
\cite{attenUnet}\cite{AttenUnet2018}\cite{InterSeg}\cite{UnetFrontNeuro}\cite{LearnActiveContour}.
This leads to high false negative detection rates. In this paper, we propose a
novel attention mechanism to directly address such high false negative rates,
called Paying Attention to Mistakes. Our attention mechanism steers the models
towards false positive identification, which counters the existing bias towards
false negatives. The proposed mechanism has two complementary implementations:
(a) "explicit" steering of the model to attend to a larger Effective Receptive
Field on the foreground areas; (b) "implicit" steering towards false positives,
by attending to a smaller Effective Receptive Field on the background areas. We
validated our methods on three tasks: 1) binary dense prediction between
vehicles and the background using CityScapes; 2) Enhanced Tumour Core
segmentation with multi-modal MRI scans in BRATS2018; 3) segmenting stroke
lesions using ultrasound images in ISLES2018. We compared our methods with
state-of-the-art attention mechanisms in medical imaging, including
self-attention, spatial-attention and spatial-channel mixed attention. Across
all of the three different tasks, our models consistently outperform the
baseline models in Intersection over Union (IoU) and/or Hausdorff Distance
(HD). For instance, in the second task, the "explicit" implementation of our
mechanism reduces the HD of the best baseline by more than , whilst
improving the IoU by more than . We believe our proposed attention
mechanism can benefit a wide range of medical and computer vision tasks, which
suffer from over-detection of background.Comment: Accepted at BMVC 202
Human infants' learning of social structures: the case of dominance hierarchy
We tested 15-month-olds’ capacity to represent social-dominance hierarchies with more than two agents. Our results showed that infants found it harder to memorize dominance relations that were presented in an order that hindered the incremental formation of a single structure (Study 1). These results suggest that infants attempt to build structures incrementally, relation by relation, thereby simplifying the complex problem of recognizing a social structure. Infants also found circular dominance structures harder to process than linear dominance structures (Study 2). These expectations about the shape of structures may facilitate learning. Our results suggest that infants attempt to represent social structures composed of social relations. They indicate that human infants go beyond learning about individual social partners and their respective relations and form hypotheses about how social groups are organized
- …