159 research outputs found

    Existence criteria for stabilization from the scaling behaviour of ionization probabilities

    Get PDF
    We provide a systematic derivation of the scaling behaviour of various quantities and establish in particular the scale invariance of the ionization probability. We discuss the gauge invariance of the scaling properties and the manner in which they can be exploited as consistency check in explicit analytical expressions, in perturbation theory, in the Kramers-Henneberger and Floquet approximation, in upper and lower bound estimates and fully numerical solutions of the time dependent Schroedinger equation. The scaling invariance leads to a differential equation which has to be satisfied by the ionization probability and which yields an alternative criterium for the existence of atomic bound state stabilization.Comment: 12 pages of Latex, one figur

    Controlling high-harmonic generation and above-threshold ionization with an attosecond-pulse train

    Get PDF
    We perform a detailed analysis of how high-order harmonic generation (HHG) and above-threshold ionization (ATI) can be controlled by a time-delayed attosecond-pulse train superposed to a strong, near-infrared laser field. In particular we show that the high-harmonic and photoelectron intensities, the high-harmonic plateau structure and cutoff energies, and the ATI angular distributions can be manipulated by changing this delay. This is a direct consequence of the fact that the attosecond pulse train can be employed as a tool for constraining the instant an electronic wave packet is ejected in the continuum. A change in such initial conditions strongly affects its subsequent motion in the laser field, and thus HHG and ATI. In our studies, we employ the Strong-Field Approximation and explain the features observed in terms of interference effects between various electron quantum orbits. Our results are in agreement with recent experimental findings and theoretical studies employing purely numerical methods.Comment: 10 pages revtex and 6 figures (eps files

    High-harmonic generation from a confined atom

    Full text link
    The order of high harmonics emitted by an atom in an intense laser field is limited by the so-called cutoff frequency. Solving the time-dependent Schr\"odinger equation, we show that this frequency can be increased considerably by a parabolic confining potential, if the confinement parameters are suitably chosen. Furthermore, due to confinement, the radiation intensity remains high throughout the extended emission range. All features observed can be explained with classical arguments.Comment: 4 pages(tex files), 4 figures(eps files); added references and comment

    Enhancement of bichromatic high-harmonic generation with a high-frequency field

    Full text link
    Using a high-frequency field superposed to a linearly polarized bichromatic laser field composed by a wave with frequency ω\omega and a wave with frequency 2ω2\omega , we show it is possible to enhance the intensity of a group of high harmonics in orders of magnitude. These harmonics have frequencies about 30% higher than the monochromatic-cutoff frequency, and, within the three-step-model framework, correspond to a set of electron trajectories for which tunneling ionization is strongly suppressed. Particular features in the observed enhancement suggest that the high-frequency field provides an additional mechanism for the electron to reach the continuum. This interpretation is supported by a time-frequency analysis of the harmonic yield. The additional high frequency field permits the control of this group of harmonics leaving all other sets of harmonics practically unchanged, which is an advantage over schemes involving only bichromatic fields.Comment: 6 pages RevTex, 5 figures (ps files), Changes in text, figures, references and equations include

    Local dynamics in high-order harmonic generation using Bohmian trajectories

    Full text link
    We investigate high-order harmonic generation from a Bohmian-mechanical perspective, and find that the innermost part of the core, represented by a single Bohmian trajectory, leads to the main contributions to the high-harmonic spectra. Using time-frequency analysis, we associate this central Bohmian trajectory to an ensemble of unbound classical trajectories leaving and returning to the core, in agreement with the three step model. In the Bohmian scenario, this physical picture builds up non-locally near the core via the quantum mechanical phase of the wavefunction. This implies that the flow of the wavefunction far from the core alters the central Bohmian trajectory. We also show how this phase degrades in time for the peripheral Bohmian trajectories as they leave the core region.Comment: 7 pages, 3 figures; the manuscript has been considerably extended and modified with regard to the previous version

    High-order harmonic generation with a strong laser field and an attosecond-pulse train: the Dirac Delta comb and monochromatic limits

    Get PDF
    In recent publications, it has been shown that high-order harmonic generation can be manipulated by employing a time-delayed attosecond pulse train superposed to a strong, near-infrared laser field. It is an open question, however, which is the most adequate way to approximate the attosecond pulse train in a semi-analytic framework. Employing the Strong-Field Approximation and saddle-point methods, we make a detailed assessment of the spectra obtained by modeling the attosecond pulse train by either a monochromatic wave or a Dirac-Delta comb. These are the two extreme limits of a real train, which is composed by a finite set of harmonics. Specifically, in the monochromatic limit, we find the downhill and uphill sets of orbits reported in the literature, and analyze their influence on the high-harmonic spectra. We show that, in principle, the downhill trajectories lead to stronger harmonics, and pronounced enhancements in the low-plateau region. These features are analyzed in terms of quantum interference effects between pairs of quantum orbits, and compared to those obtained in the Dirac-Delta limit.Comment: 10 pages, 7 figures (eps files). To appear in Laser Physic

    Metric Operators for Quasi-Hermitian Hamiltonians and Symmetries of Equivalent Hermitian Hamiltonians

    Full text link
    We give a simple proof of the fact that every diagonalizable operator that has a real spectrum is quasi-Hermitian and show how the metric operators associated with a quasi-Hermitian Hamiltonian are related to the symmetry generators of an equivalent Hermitian Hamiltonian.Comment: 6 pages, published versio

    Classical and quantum-mechanical treatments of nonsequential double ionization with few-cycle laser pulses

    Full text link
    We address nonsequential double ionization induced by strong, linearly polarized laser fields of only a few cycles, considering a physical mechanism in which the second electron is dislodged by the inelastic collision of the first electron with its parent ion. The problem is treated classically, using an ensemble model, and quantum-mechanically, within the strong-field and uniform saddle-point approximations. In the latter case, the results are interpreted in terms of "quantum orbits", which can be related to the trajectories of a classical electron in an electric field. We obtain highly asymmetric electron momentum distributions, which strongly depend on the absolute phase, i.e., on the phase difference between the pulse envelope and its carrier frequency. Around a particular value of this parameter, the distributions shift from the region of positive to that of negative momenta, or vice-versa, in a radical fashion. This behavior is investigated in detail for several driving-field parameters, and provides a very efficient method for measuring the absolute phase. Both models yield very similar distributions, which share the same physical explanation. There exist, however, minor discrepancies due to the fact that, beyond the region for which electron-impact ionization is classically allowed, the yields from the quantum mechanical computation decay exponentially, whereas their classical counterparts vanish.Comment: 12 pages revtex, 12 figures (eps files
    corecore