259 research outputs found

    Experimental approval of the extended flat bands and gapped subbands in rhombohedral multilayer graphene

    Full text link
    Graphene layers are known to stack in two stable configurations, namely ABA or ABC stacking, with drastically distinct electronic properties. Unlike the ABA stacking, little has been done to experimentally investigate the electronic properties of ABC graphene multilayers. Here, we report the first magneto optical study of a large ABC domain in a graphene multilayers flake, with ABC sequences exceeding 17 graphene sheets. The ABC-stacked multilayers can be fingerprinted with a characteristic electronic Raman scattering response, which persists even at room temperatures. Tracing the magnetic field evolution of the inter Landau level excitations from this domain gives strong evidence to the existence of a dispersionless electronic band near the Fermi level, characteristic of such stacking. Our findings present a simple yet powerful approach to probe ABC stacking in graphene multilayer flakes, where this highly degenerated band appears as an appealing candidate to host strongly correlated states.Comment: 8 pages, 4 figure

    Fine structure of K\mathrm{K}-excitons in multilayers of transition metal dichalcogenides

    Full text link
    Reflectance and magneto-reflectance experiments together with theoretical modelling based on the kp\mathbf{k\cdot p} approach have been employed to study the evolution of direct bandgap excitons in MoS2_2 layers with a thickness ranging from mono- to trilayer. The extra excitonic resonances observed in MoS2_2 multilayers emerge as a result of the hybridization of Bloch states of each sub-layer due to the interlayer coupling. The properties of such excitons in bi- and trilayers are classified by the symmetry of corresponding crystals. The inter- and intralayer character of the reported excitonic resonances is fingerprinted with the magneto-optical measurements: the excitonic gg-factors of opposite sign and of different amplitude are revealed for these two types of resonances. The parameters describing the strength of the spin-orbit interaction are estimated for bi- and trilayer MoS2_2.Comment: 14 pages, 10 figure

    Probing and manipulating valley coherence of dark excitons in monolayer WSe2_2

    Full text link
    Monolayers of semiconducting transition metal dichalcogenides are two-dimensional direct-gap systems which host tightly-bound excitons with an internal degree of freedom corresponding to the valley of the constituting carriers. Strong spin-orbit interaction and the resulting ordering of the spin-split subbands in the valence and conduction bands makes the lowest-lying excitons in WX2_2 (X~being S or Se) spin-forbidden and optically dark. With polarization-resolved photoluminescence experiments performed on a WSe2_2 monolayer encapsulated in a hexagonal boron nitride, we show how the intrinsic exchange interaction in combination with the applied in-plane and/or out-of-plane magnetic fields enables one to probe and manipulate the valley degree of freedom of the dark excitons.Comment: Manuscript: 6 pages, 3 figures; SM: 6 pages, 5 figure

    2s exciton-polariton revealed in an external magnetic field

    Full text link
    We demonstrate the existence of the excited state of an exciton-polariton in a semiconductor microcavity. The strong coupling of the quantum well heavy-hole exciton in an excited 2s state to the cavity photon is observed in non-zero magnetic field due to surprisingly fast increase of Rabi energy of the 2s exciton-polariton in magnetic field. This effect is explained by a strong modification of the wave-function of the relative electron-hole motion for the 2s exciton state.Comment: 5 pages, 5 figure

    Neutral and charged dark excitons in monolayer WS2_2

    Full text link
    Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS2_2 encapsulated in hexagonal BN (hBN). We find that this system is an nn-type doped semiconductor and that dark trions dominate the emission spectrum. In line with previous studies on WSe2_2, we identify the Coulomb exchange interaction coupled neutral dark and grey excitons through their polarization properties, while an analogous effect is not observed for dark trions. Applying the magnetic field in both perpendicular and parallel configurations with respect to the monolayer plane, we determine the g-factor of dark trions to be gg\sim-8.6. Their decay rate is close to 0.5 ns, more than 2 orders of magnitude longer than that of bright excitons.Comment: 6 pages, 6 figures, supplemental materia

    Identification of fracture toughness parameters to understand the fracture resistance of advanced high strength sheet steels

    Get PDF
    The fracture toughness of four advanced high strength steel (AHSS) thin sheets is evaluated through different characterization methodologies, with the aim of identifying the most relevant toughness parameters to describe their fracture resistance. The investigated steels are: a Complex Phase steel, a Dual Phase steel, a Trip-Aided Bainitic Ferritic steel and a Quenching and Partitioning steel. Their crack initiation and propagation resistance is assessed by means of J-integral measurements, essential work of fracture tests and Kahn-type tear tests. The results obtained from the different methodologies are compared and discussed, and the influence of different parameters such as specimen geometry or notch radius is investigated. Crack initiation resistance parameters are shown to be independent of the specimen geometry and the testing method. However, significant differences are found in the crack propagation resistance values. The results show that, when there is a significant energetic contribution from necking during crack propagation, the specific essential work of fracture (we) better describes the overall fracture resistance of thin AHSS sheets than JC. In contrast, energy values obtained from tear tests overestimate the crack propagation resistance and provide a poor estimation of AHSS fracture performance. we is concluded to be the most suitable parameter to describe the global fracture behaviour of AHSS sheets and it is presented as a key property for new material design and optimization.Peer ReviewedPostprint (author's final draft
    corecore