969 research outputs found

    Symmetry-enhanced supertransfer of delocalized quantum states

    Get PDF
    Coherent hopping of excitation rely on quantum coherence over physically extended states. In this work, we consider simple models to examine the effect of symmetries of delocalized multi-excitation states on the dynamical timescales, including hopping rates, radiative decay, and environmental interactions. While the decoherence (pure dephasing) rate of an extended state over N sites is comparable to that of a non-extended state, superradiance leads to a factor of N enhancement in decay and absorption rates. In addition to superradiance, we illustrate how the multi-excitonic states exhibit `supertransfer' in the far-field regime: hopping from a symmetrized state over N sites to a symmetrized state over M sites at a rate proportional to MN. We argue that such symmetries could play an operational role in physical systems based on the competition between symmetry-enhanced interactions and localized inhomogeneities and environmental interactions that destroy symmetry. As an example, we propose that supertransfer and coherent hopping play a role in recent observations of anomolously long diffusion lengths in nano-engineered assembly of light-harvesting complexes.Comment: 6 page

    Geometrical effects on energy transfer in disordered open quantum systems

    Get PDF
    We explore various design principles for efficient excitation energy transport in complex quantum systems. We investigate energy transfer efficiency in randomly disordered geometries consisting of up to 20 chromophores to explore spatial and spectral properties of small natural/artificial Light-Harvesting Complexes (LHC). We find significant statistical correlations among highly efficient random structures with respect to ground state properties, excitonic energy gaps, multichromophoric spatial connectivity, and path strengths. These correlations can even exist beyond the optimal regime of environment-assisted quantum transport. For random configurations embedded in spatial dimensions of 30 A and 50 A, we observe that the transport efficiency saturates to its maximum value if the systems contain 7 and 14 chromophores respectively. Remarkably, these optimum values coincide with the number of chlorophylls in (Fenna-Matthews-Olson) FMO protein complex and LHC II monomers, respectively, suggesting a potential natural optimization with respect to chromophoric density.Comment: 11 pages, 10 figures. Expanded from the former appendix to arXiv:1104.481

    Super-harmonic injection locking of nano-contact spin-torque vortex oscillators

    Full text link
    Super-harmonic injection locking of single nano-contact (NC) spin-torque vortex oscillators (STVOs) subject to a small microwave current has been explored. Frequency locking was observed up to the fourth harmonic of the STVO fundamental frequency f0f_{0} in microwave magneto-electronic measurements. The large frequency tunability of the STVO with respect to f0f_{0} allowed the device to be locked to multiple sub-harmonics of the microwave frequency fRFf_{RF}, or to the same sub-harmonic over a wide range of fRFf_{RF} by tuning the DC current. In general, analysis of the locking range, linewidth, and amplitude showed that the locking efficiency decreased as the harmonic number increased, as expected for harmonic synchronization of a non-linear oscillator. Time-resolved scanning Kerr microscopy (TRSKM) revealed significant differences in the spatial character of the magnetization dynamics of states locked to the fundamental and harmonic frequencies, suggesting significant differences in the core trajectories within the same device. Super-harmonic injection locking of a NC-STVO may open up possibilities for devices such as nanoscale frequency dividers, while differences in the core trajectory may allow mutual synchronisation to be achieved in multi-oscillator networks by tuning the spatial character of the dynamics within shared magnetic layers.Comment: 21 pages, 8 figure

    Hyperentanglement-enabled Direct Characterization of Quantum Dynamics

    Full text link
    We use hyperentangled photons to experimentally implement an entanglement-assisted quantum process tomography technique known as Direct Characterization of Quantum Dynamics. Specifically, hyperentanglement-assisted Bell-state analysis enabled us to characterize a variety of single-qubit quantum processes using far fewer experimental configurations than are required by Standard Quantum Process Tomography (SQPT). Furthermore, we demonstrate how known errors in Bell-state measurement may be compensated for in the data analysis. Using these techniques, we have obtained single-qubit process fidelities as high as 98.2% but with one-third the number experimental configurations required for SQPT. Extensions of these techniques to multi-qubit quantum processes are discussed.Comment: This is part of a joint submission with an implementation with Ions: "Experimental characterization of quantum dynamics through many-body interactions" by Daniel Nigg, Julio T. Barreiro, Philipp Schindler, Masoud Mohseni, Thomas Monz, Michael Chwalla, Markus Hennrich and Rainer Blat
    • …
    corecore