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Abstract. Coherent hopping of excitation relies on quantum coherence
over physically extended states. In this work, we consider simple models
to examine the effect of symmetries of delocalized multi-excitation states
on the dynamical timescales, including hopping rates, radiative decay and
environmental interactions. While the decoherence (pure dephasing) rate of
an extended state over N sites is comparable to that of a non-extended state,
superradiance leads to a factor of N enhancement in decay and absorption rates.
In addition to superradiance, we illustrate how the multi-excitonic states exhibit
‘supertransfer’ in the far-field regime—hopping from a symmetrized state over
N sites to a symmetrized state over M sites at a rate proportional to MN . We
argue that such symmetries could play an operational role in physical systems
based on the competition between symmetry-enhanced interactions and localized
inhomogeneities and environmental interactions that destroy symmetry. As an
example, we propose that supertransfer and coherent hopping play a role in
recent observations of anomalously long diffusion lengths in nano-engineered
assembly of light-harvesting complexes.
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Recent works on quantum coherence of photosynthesis have revealed a rich tapestry of coherent
and incoherent interactions in excitonic hopping processes [1]–[10]. Natural selection may well
have tuned the trade-offs between coherent hopping, decoherence, dissipation and the non-
Markovian nature of the phonon environment, to arrive at robust and highly efficient energy
transfer methods [3, 9]. As is typical of biological systems, the highly evolved final product
of evolution exhibits a complexity that reflects the different types of apparatus required to take
advantage of the wide range of dynamical effects at the microscale. While efficient from an
evolutionary standpoint, this complexity can mask the essential simplicity of the underlying
quantum effects that allow energy transfer to take place in the first place.

One of the key features of excitonic energy transfer in photosynthesis is the extended,
delocalized nature of the states involved in the hopping process. This extended form of the
states is enforced from the very moment of photon absorption: because the wavelength of light
is large compared to the atomic scale, a very large number of electrons participate coherently in
the initial absorption process, and the resulting initial excitonic state extends over a large number
of atoms or molecules. This paper looks at the dynamics and environmental interactions of states
that extend over N atoms, and uses simple quantum models to establish some general features
of such interactions.

First of all, states that interact symmetrically with a collection of bosons (phonons
or photons or both) exhibit the normal N -fold superradiant enhancement of emission and
absorption in both the resonant and non-resonant regimes [11]–[16]. Superradiance, of course,
follows directly from the symmetrized nature of the atom–boson interaction. Interactions that
break that symmetry can lead to non-radiant excited states, multiple-site analogues of the non-
radiant two-site antisymmetrized singlet state. By contrast, environmental interactions such
as decoherence that do not rely on energy exchange exhibit no ‘super’ enhancement of the
decoherence rate of single-exciton states due to symmetry.

We employ a second-quantized spin–boson notation that allows the treatment of multiple
excitonic states. For multiple excitonic states, the decoherence rate can either be enhanced
or decreased, depending on the nature of the correlations between the multiple excitons.
Symmetrized states of n excitons spread among N sites exhibit the usual superradiant
factor of (N − n + 1)n in their emission rate. Antisymmetrized states of n excitons can have
their emission rate largely suppressed, thereby providing a potential mechanism for exciton
preservation in multi-site systems.

Decoherence or pure dephasing has a different dependency on exciton number:
symmetrized states of n excitons coupled symmetrically to a common environment exhibit a
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decoherence rate that goes as n times the single exciton rate. In contrast, the decoherence rate of
an uncorrelated n-exciton state, or a symmetric state coupled to an asymmetric environment,
typically goes as

√
n times the single exciton rate. As in the case of emission, states in

special antisymmetrized decoherence-free subspaces can have their decoherence rates largely
suppressed.

The features of delocalized states interacting symmetrically with their environment
described so far are well known. In particular, the effects of inhomogeneous broadening (static
disorder) and phonon–bath coupling on superradiance relaxation for molecular aggregates have
been studied in detail [13]–[15]. Less familiar is the phenomenon of cooperative excitation
energy transfer or supertransfer [17, 18]: consider an extended excitonic state over N sites that
is hopping to an extended state over M sites. If the hopping interaction possesses the proper
symmetries, then we show below that the overall hopping rate is proportional to MN , and
there is an enhancement of N over the hopping rate of a localized state hopping to one of
the M sites. The supertransfer enhancement follows from the same symmetry considerations as
superradiance, but it is essentially a radiationless relaxation. Under certain conditions where a
molecular aggregate can coherently donate an excitation and an acceptor molecular aggregate
can coherently receive it, the dipole approximation and first-order perturbation for electronic
coupling imply that we might observe supertransfer of excitation energy. Supertransfer also
appears when the time-averaged site–site couplings γi j between each of the N sites and each
of the M sites are largely similar. Cooperative excitation energy transfer can also occur in
disordered chromophoric systems and light-harvesting (LH) complexes [18].

Symmetric enhancements of dynamical timescales extend to environmental interactions.
An interaction between excitons at N sites and a set of bosonic modes (phonons, photons) can
be decomposed into fully symmetrized interactions between the symmetric states over those
sites and symmetrized bosonic modes, and into other interactions with different symmetries. The
fully symmetrized interactions participate in the N -fold superradiant enhancement of interaction
rates. Accordingly, these interactions participate more strongly in, e.g., symmetrized hopping
interactions. Meanwhile, the other interactions tend to destroy the symmetry of the extended
states and reduce hopping.

A full treatment of the various symmetries of interactions between spins, atoms, excitons
and bosonic environment modes would require a general treatment in terms of representations
of the symmetric group using Young diagrams and tableaux. As the purpose of this paper is
simply to examine the way in which superradiant enhancements ‘spill over’ into hopping and
environmental interactions, we content ourselves here with a treatment of fully symmetrized
states and leave the more general treatment for elsewhere [19].

1. Supertransfer in the spin–boson model

We start by reviewing the ordinary picture of superradiance in the resonant interaction between
N two-level atoms and a mode of the electromagnetic field. The Hamiltonian for this system is

H = h̄

ωa†a − ω/2
N∑

j=1

σ j
z + γ

∑
j

σ j
x (a + a†)

 . (1)
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For simplicity, we have assumed that the oscillatory field is polarized along the x-axis. The
ground state of each atom is |0〉 = |↑〉, and the excited state is |1〉 = |↓〉. The fully symmetrized
state with n excited atoms is

|n〉 ≡
1

√
N

∑
π∈SN

|π(00 . . . 011 . . . 1)〉. (2)

Here, π is a permutation in the symmetric group over N elements, SN , and there are n 1s and
N − n 0s in the state. The states |n〉 are those that are obtained from the state |N 〉 = |11 . . . 1〉

by radiant decay or from the state |0〉 = |00 . . . 0〉 by stimulated absorption.
As Dicke pointed out, superradiance arises from the symmetrized nature of the states and

their interaction with the field [11]. If we look at the decay rate of a single atom coupled to the
field in its vacuum state, we find that its amplitude to first order in perturbation theory goes as
γ , and its probability goes as γ 2. By contrast, the decay amplitude of the symmetrized state |n〉

goes as

〈m = 1|〈n − 1|γ
∑

j

σ j
x (a† + a)|n〉|m = 0〉

=

√
n(N − n + 1)γ, (3)

where m labels the photon number in the mode. The decay probability goes as n(N − n + 1)γ 2.
Comparing the decay rate of the one-excitation symmetrized state |n = 1〉 with that of the single-
atom decay rate, we see that the symmetrized state decays N times as fast. By contrast, the
stimulated emission rate for the symmetrized state is the same as the incoherent stimulated
emission rate.

Symmetry can enhance more than the spontaneous emission rate. Let us turn to hopping
and see what happens when an excitonic state that is symmetrized over N sites hops to an
excitonic state that is symmetrized over M sites via a symmetric coupling [17]. In this idealized
case, the symmetrized hopping Hamiltonian is

H = h̄

−
ωA

2

N∑
j=1

σ j
z −

ωB

2

M∑
k=1

σ k
z + γ

N ,M∑
j=1,k=1

σ j
+ σ k

−
+ σ

j
−σ k

+

 . (4)

Here, j labels the A sites and k labels the B sites. Performing the same calculation as in
superradiance, but taking into account the symmetrized nature of both the A and B states, shows
that the rate of hopping of an excitation from the symmetrized state |n〉|m〉 to the symmetrized
state |n − 1〉|m + 1〉 goes as γ 2n(N − n + 1)(m + 1)(M − m). Taking into account transfer from
B to A as well as from A to B, we find that the overall transfer rate from A to B, starting in the
state |n〉|m〉, goes as

γ 2(n(N − n + 1)(m + 1)(M − m) − (n + 1)(N − n)m(M − m + 1)), (5)

where the first term represents the rate of an excitation hopping from A to B and the second
term represents the rate of hopping from B to A. For a single symmetrized excitation hopping
from the A states to the B states we see that the rate of transition from |n = 1〉|m = 0〉 to
|n = 0〉|m = 1〉 goes as γ 2 NM : that is, the hopping rate between symmetrized single excitation
states goes as NM times the hopping rate of an excitation between one of the A sites to one
of the B sites. For higher numbers of excitations, we see that the quartic terms in equation (5)
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cancel out, leaving only cubic terms. For example, when there are O(N ) excitations in A, and
O(M) < O(N ) excitations in B, the transfer rate from A to B goes as O(N 2 M).

Similar supertransfer due to partial symmetry may be relevant for various hopping
processes in photosynthetic LH complexes [13]–[15], within the context of generalized Förster
theory [18], [20]–[22]. In the typical treatment of Frenkel exciton in these systems, the transfer
rate is calculated from the transition probability of an excitation hopping from one molecule to
another using Förster resonance energy transfer (FRET) based on dipole–dipole interaction of
individual molecules and perturbation theory (Fermi’s golden rule). However, due to strong
interactions of a group of molecules, the excitation can become highly delocalized. Thus,
one can introduce a huge (effective) dipole moment associated with each group leading to
an enhanced oscillator strength. Consequently, the rate of exciton dynamics can be calculated
from these effective very large dipole–dipole interactions, even in the far field within the dipole
approximation. A closely packed group of N molecules under certain symmetry can collectively
accept or donate an excitation with a rate that is almost N times faster than each individual
molecule.

Consider, for example, the rate of hopping of a single exciton from a ring containing N
chromophores to a ring containing M chromophores. If the chromophores are spread evenly
along each ring, then the lowest energy states single-exciton states in each ring are in fact the
fully symmetric |n = 1〉 and |m = 1〉 states. If the two rings are distant from each other and
coupled, e.g. via dipolar Förster forces, then the couplings of the chromophores between rings
are approximately symmetric. Accordingly, the rate of hopping from the A ring to the B ring is
NM times the rate of an exciton hopping from a chromophore on the A ring to a chromophore
on the B ring. The hopping enhancement arises because hopping between symmetrized states
is essentially a kind of superradiance where the A states ‘emit’ their excitonic energy into the B
states. Circular symmetry of the above nature exists in LHI and LHII of purple bacteria [23].

2. Symmetry properties of delocalized states under environmental interactions

There are many other effects in real quantum systems including diagonal and off-diagonal
static disorders, couplings of excitonic states within a single ring and phonon–bath couplings.
If ωA 6= ωB , then the excitonic transfer must be accompanied by energy transfer to/from the
environment. Now, just as the effects of symmetry translated directly over from superradiance
to supertransfer, we will show that symmetry can similarly enhance the effects of environmental
interactions. Let us include intra-ring couplings and add bosonic environments to the A and B
states, so that our overall Hamiltonian is

H = h̄

(
−

ωA

2

N∑
j=1

σ j
z +

∑
`

ωA`a
†
`a` +

∑
j`

0 j`H j` −
ωB

2

M∑
k=1

σ k
z +

∑
`′

ωB`′a†
`′a`′ +

∑
k`′

0 j`′ H j`′

+γ

N ,M∑
j=1,k=1

σ j
+ σ k

−
+ σ

j
−σ k

+ +
N∑

j, j ′=1

γ j j ′(σ j
+ σ

j ′

− + σ
j

−σ j ′

+ ) +
M∑

k,k′=1

γkk′(σ k
+ σ k′

−
+ σ k

−
σ k′

+ )

)
.

(6)

Here H j` is some suitable interaction between the j th spin and the `th mode, e.g. γ j`(a
†
`σ

j
− +

a`σ
j

+ ).
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The term γ represents the symmetric inter-ring coupling, and the terms γ j j ′ , γkk′ represent
the intra-ring couplings within the A and B rings, respectively. Note that even with intra-ring
hopping couplings, because of the symmetric arrangement of chromophores in the ring, the fully
symmetric single-exciton state within each ring is the ground state of the single-exciton sector.

The key feature of this Hamiltonian (and of similar multiple-spin/multiple boson models) is
that the environmental interaction can contain a significant component that is coupled directly
to the symmetrized states |n〉. This is true even if the general interaction takes the form of
interactions between local sites and local modes as above. The insight here is that, because
the interaction is linear in the a`, a†

` and the Pauli matrices, we are always free to perform
a Bogoliubov transformation on the modes to identify modes corresponding to delocalized,
symmetrized bosonic excitations. In the case of a chromophoric ring, as above, these excitations
are simply the global symmetrized vibrational modes of the ring itself. That is, if each site is
coupled to a localized phonon mode with frequency ω, then we are free to define a delocalized,
symmetric phonon mode with frequency ω: the symmetrized states of the ring are then coupled
to this symmetrized phonon state with the usual superradiant factor of N .

Now, just as in superradiance, the amplitude in first-order perturbation theory for the
destruction of a symmetrized excitation of the spins and the creation of a symmetrized
excitation of the bosonic modes is proportional to

√
n(N − n + 1). Moreover, in the overall

Hamiltonian (6), we can extract the symmetrized sectors of spin states and bosonic states in
A and B, respectively. Transitions between these states, including those that involve emission
of energy into the symmetrized phonon modes, all involve superradiant enhancements. As the
case of hopping shows, when an N -site symmetrized state exchanges energy via a symmetric
interaction with an M-site state, the enhancement of the interaction rate goes as the product
n(N − n + 1)(m + 1)(M − m), where n, m are the excitation numbers of the symmetrized states,
including now the states of the symmetrized bosonic modes, and the net transfer of energy goes
as equation (5). While the case of excitonic hopping is frequently restricted physically to the
interactions of a few excitons at a time, the symmetrized modes of the bosonic bath can readily
contain a large number of phonons, so that the extra factors of n, m can really ‘kick in’ and
enhance the transfer of energy from excitonic states to the bath, and back to excitonic states
again. As equation (5) shows, the rate of transfer grows as a cubic function of the populations
and site numbers.

We can now formally decompose the Hamiltonian of equation (6) into cooperative and
‘normal’ sectors. The cooperative sector consists of the symmetrized states over the N sites
of the A sector and the M sites of the B sector, together with the symmetrized states of
the bosonic modes in each sector. Let PC be the projection operator onto the subspace of
the system–environment Hilbert space that is spanned by the cooperative states. Similarly,
let PN = 1 − PC be the projector onto the ‘normal’, or non-cooperative subspace. We can
then decompose our general Hamiltonian, equation (6), into cooperative sectors (C) and a
‘normal’ sector (N), together with couplings between these sectors: H = HC + HN + HCN, where
HC = PC H PC is the Hamiltonian confined to the cooperative subspace, HN = PN H PN is the
Hamiltonian confined to the normal subspace and HCN = PC H PN + PN H PC is the part of the
Hamiltonian that couples the cooperative to the normal sector.

In the single-exciton sector, HC just represents two two-level systems, each coupled to its
own environment, but with an enhancement of NM in hopping strength of the exciton from A
to B, and with an enhancement of N (m + 1)(N − m) in the interaction strengths for exchange
of energy between the A-exciton and the m bosons in the cooperative mode of A’s environment

New Journal of Physics 12 (2010) 075020 (http://www.njp.org/)

http://www.njp.org/


7

(similarly for B). In the multiple-exciton sector, HC is a Hamiltonian that couples two nonlinear
harmonic oscillators, where the nonlinearity arises from excitonic interactions; HC also contains
these oscillators’ interactions with their cooperative environments.

The two essential features of the decomposition into cooperative and normal sections are
as follows. Firstly, the cooperative Hilbert space has a drastically reduced dimension compared
with the full Hilbert space. From the point of view of transport efficiency, this reduced dimension
is useful because it prevents the hopping exciton from becoming ‘lost in Hilbert space’: the
exciton can inhabit either the A oscillator, or the B oscillator, or it can be transferred to the
cooperative environment. The cooperative Hilbert space is too simple, however, to admit such
phenomena as localization. In other words, the cooperative Hilbert space is simply too small to
get lost in. From the perspective of a scientist investigating the behavior of excitonic hopping,
the small size of the cooperative Hilbert space has the advantage that simulating behavior of the
cooperative sector is relatively simple compared with a full many-body treatment.

The second key feature of the full Hamiltonian HC + HN + HCN is the relative strength
of the dynamics in the different sectors. In the cooperative sector, interactions cooperate
coherently, leading to an enhancement of N , M for the interactions of A and B with their
respective environments and an enhancement of MN for the interaction strength. By contrast,
the interactions between the cooperative and normal sectors involve mixed symmetries, which
add incoherently. The terms HCN couple the fully symmetrized sector of Hilbert space to
sectors with differing symmetry. These parts of the Hamiltonian induce ‘leakage’ from the
symmetric sector. Because the leakage rates do not receive any superradiant enhancement, they
can in principle be modeled as a perturbation to the cooperative dynamics. To fully explore the
implications of the existence of the cooperative sector, we should construct a master equation
using the cooperative sector as the ‘system’ and the non-cooperative sector as the ‘environment’.
Such a symmetry-based master equation approach will be explored in future work.

Our overall picture, then, is as follows. We have a cooperative sector where quantum
interference and symmetrization induce enhanced rates of hopping and energy exchange with a
symmetrized environment. The cooperative sector has relatively few degrees of freedom. The
‘non-cooperative’, i.e. ordinary, sector has many more degrees of freedom, but the coupling rates
from the cooperative to the uncooperative sector can be considerably smaller (e.g. two orders
of magnitude smaller if A and B each have a dozen or so sites) than the coupling rates within
the cooperative sector. Once a state departs from the cooperative sector, however, it is unlikely
to return unless the cooperative sector possesses an intrinsically lower energy than states in the
non-cooperative sector, in which case relaxation can drive the system back into the cooperative
sector. Resymmetrization by relaxation occurs, for example, in the common case where the
lowest energy single-exciton state in a ring is the state that is a symmetric superposition of
excitons located at each chromophore. (In quantum information, such a state is known as a W
state.)

Resymmetrization via relaxation of excitonic states within a ring has the potential to
increase the hopping rate by the following mechanism. In situations where the spatial extent
of the ring is not small compared with the distance between rings, the couplings of excitons
between rings will no longer be symmetric: excitons at the closer edge will couple more strongly
than excitons at the further edge. Consequently, the symmetrized state of one ring may have a
significant coupling to an asymmetric state of the second ring. As long as these asymmetric
states relax to the ground state of the second ring, such couplings will tend to increase the
transfer rate.

New Journal of Physics 12 (2010) 075020 (http://www.njp.org/)

http://www.njp.org/


8

A second way that the transfer rate can be enhanced is by coupling of excited states of ring
A with excited states of the same symmetry class of ring B. The N -dimensional Hilbert space
of single-excitonic states of A decomposes under the symmetric group into the direct sum of
the one-dimensional fully symmetric space—the fully symmetric state described above—plus
the N − 1 dimensional antisymmetric subspace. If the ambient temperature is higher than the
energy splitting between the symmetric ground state of the single-exciton sector and the higher-
energy states within that sector, a further enhancement mechanism is the symmetric coupling of
higher energy single-exciton states in ring A with excited states with the same symmetry type in
sector B. The transfer rate due to such couplings between states of the same symmetry exhibits
the sameMN -fold enhancement as the couplings between the symmetrized ground states.
Whether or not such interplay between excited single-exciton states plays a significant role
depends on the strength of the various couplings compared with each other and compared with
the ambient temperature. The full effects of differing symmetry types in such complex quantum
systems lie outside the scope of the current paper and will be dealt with in a future work.

3. Application to nano-engineered LH2 complexes

Even without a detailed master equation treatment, we can still apply the concept of a ‘speeded
up’ cooperative sector to experimentally observed effects reported in [10] that demonstrates an
anomalously long diffusion length in engineered arrays of LH2 complexes. Two systems were
investigated: a two-dimensional crystal of LH2 complexes and an effectively one-dimensional
nanofabricated array of such complexes. In both systems, diffusion lengths of up to a micron
were reported.

On the face of it, this diffusion length seems absurdly long: LH2 complexes are about
7 nm in diameter and 6.8 nm in height. A diffusion length of a micron requires O(105) exciton
hopping steps over the course of 1–1.5 ns lifetime with an effective displacement of about 300
units away from its original location. If the dynamics is described by diffusive hopping from
complex to complex, such a diffusion length would require hopping times of 10–15 fs. By
contrast, detailed calculations and experimental observation of naturally occurring arrangements
of LH2 complexes suggest a hopping time of around 5 ps, a difference of almost three orders of
magnitude.

Cooperative quantum behavior suggests an alternative explanation for these anomalous
diffusion lengths. Each LH2 complex contains a ring of N = 18 bacterial chlorophylls with
a resonant frequency for light with a wavelength of 800 nm, and nine chlorophylls with a
resonant frequency at 850 nm. Thus, we may reasonably expect a significant enhancement
from cooperative coherent effects. The frequencies and linewidths of the LH2 complexes in the
crystals and nanofabricated arrays are essentially the same as in native LH2. The exact effect
of cooperative behavior depends on the precise arrangement of LH2 complexes in each array
and is difficult to calculate. From the above analysis, however, it is reasonable to suppose that
cooperative behavior enhances the actual LH2 to LH2 hopping rate by a factor α. For example,
taking the ‘native’ value of 5 ps for the enhanced hopping time, α = 5 represents an enhanced
hopping time of around 1 ps.

Even if α = 10, we are still a factor of hundred away from the 10–15 fs hopping rate
required for an incoherent hopping process to explain the anomalous diffusion rate. Now,
however, the speeded up cooperative hopping allows a second effect of quantum coherence to
come into play. Let the lifetime of the exciton be T and the decoherence time for the hopping
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process be τ . We do not know the decoherence time for hopping in such engineered arrays,
but in other photosynthetic systems it ranges from picoseconds to tens of picoseconds. Call the
hopping rate in the absence of cooperative effects γ , and the hopping rate in the presence of
cooperative effects αγ . If αγ is significantly greater than 1/τ , then the exciton hops coherently
through the array for about ` = αγ τ steps. In other words, for brief periods of time, the exciton
is performing a quantum walk. During this time, as is usual with quantum walks, the coherent
diffusion time goes linearly in the number of steps, rather than as the square root of the number
of steps. For times longer than the decoherence time, the hopping becomes incoherent. We can
therefore model the combination of coherent and incoherent hopping as diffusive transport with
a hopping rate equal to the original, unenhanced rate γ , but with an increased step size of `.
We see the effect of coherent hopping to increase the effective diffusion length.

Let the net number of units that the exciton has to diffuse before decaying be L . In the case
of the LH2 complexes, L is of the order of 300. The effect of cooperative coherent behavior is to
reduce the total number of required incoherent hopping events from L2 to L2/`2

= L2/(αγ τ)2.
The total number of incoherent hopping events in the coherence-enhanced diffusion is not
greater than the overall lifetime times the hopping rate, T γ . Putting these relations together,
to explain the anomalously long diffusion rate in terms of cooperative coherent behavior, we
require that the dimensionless step size ` be at least

` = ατγ >
L

γ 1/2T 1/2
. (7)

For L = 300, T = 1 ns, γ −1
= 5 ps, this requires that ατ be greater than 100 ps. For example,

if the coherent enhancement factor α = 5, a reasonable number given that there are 18 LH2
chlorophylls participating in transport at 800 nm, and 9 participating at 850 nm, then the hopping
decoherence time must be at least 20 ps. If, by contrast, in the packed arrays of crystalline
and nanofabricated LH2, γ = 2 ps, then ατ need only be around 20 ps. Pending more exact
observations of the hopping decoherence rate in LH2 arrays, and more exact calculations of the
actual coherent enhancement, such numbers seem entirely reasonable: only moderate coherent
enhancements are required to explain the three orders of magnitude increase of the apparent
hopping rate in nano-engineered LH2 arrays.

4. Conclusion

This paper has presented a simplified discussion of the effects of symmetry on hopping
processes and environmental interactions. Just as symmetry provides an enhancement of
superradiance, it can, under the proper circumstances, lead to supertransport, i.e. an effective
enhancement of hopping rates and of coherent and incoherent interactions with environmental
modes. Conversely, antisymmetry can significantly reduce effective environmental interactions
and enhance excitonic lifetimes. The interplay between symmetry and antisymmetry properties
of delocalized excitonic states in photosynthetic complexes can be thought of as nature’s use of
quantum coherence effects.

A full dynamical analysis of the effects of the symmetry-breaking part of the Hamiltonian
will be the subject of a subsequent work [19]. Silbey and co-workers constructed a
theory for multi-chromophoric Forster energy transfer that can provide a useful model for
studying enhanced cooperative transport in disordered materials and photosynthetic complexes
assuming that coupling between collective donor and acceptor chromophores can be treated
perturbatively [22]. Generally, in addition to important effects of disorders and phonon–bath
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couplings, the geometrical structure of the donor and the acceptor in molecular aggregates could
play a significant role when one considers excitonic transfer beyond dipole approximation [18].
Recently, there has been a great deal of interest in the study of excitonic transport in non-
perturbative and non-Markovian regime [8, 9]. Similar approaches for exploiting certain
symmetry of chromophoric structures and their coherence/decoherence dynamical interplay
[3, 24] could lead to design principles for engineering artificial excitonic systems, such
as quantum dot structures and organic materials, for efficient excitation energy absorbtion,
emission, storage and transport. The observation of anomalously long diffusion lengths in LH2
arrays suggests that even moderate degrees of coherent cooperation can significantly enhance
the performance of engineered excitonic systems.
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