121 research outputs found

    Lack of an association between SCFD1 rs10139154 polymorphism and amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Through a genome‑wide association study (GWAS), the Sec1 family domain‑containing protein 1 (SCFD1) rs10139154 variant at 14q12 has emerged as a risk factor gene for ALS. Moreover, it has been reported to influence the age at onset (AAO) of patients with ALS. The aim of the present study was to assess the association of the SCFD1 rs10139154 polymorphism with the risk of developing ALS. For this purpose, 155 patients with sporadic ALS and 155 healthy controls were genotyped for the SCFD1 rs10139154. The effect of the SCFD1 rs10139154 polymorphism was then examined on the following parameters: i) The risk of developing ALS; ii) the AAO of ALS; iii) the site of ALS onset (patients with bulbar onset ALS vs. healthy controls; and patients with limb onset ALS vs. healthy controls); and iv) the AAO of ALS onset with subgroup analyses based on the site of onset (bulbar and limb, crude and adjusted for sex). The analysis of all the outcomes was performed assuming five genetic models. Crude and adjusted analyses were applied. The threshold for statistical significance was set at 0.05. The results revealed no association between SCFD1 rs10139154 and any of the examined phenotypes in any of the models examined. On the whole, based on the findings of the present study, SCFD1 rs10139154 does not appear to play a determining role in the risk of developing ALS

    Unraveling the Possible Routes of SARS-COV-2 Invasion into the Central Nervous System

    Get PDF
    Purpose of Review: To describe the possible neuroinvasion pathways of Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), the virus responsible for the Coronavirus disease-19 (Covid-19) pandemic. Recent Findings: We present data regarding the family of Coronaviruses (CoVs) and the central nervous system (CNS), and describe parallels between SARS-CoV-2 and other members of the family, which have been investigated in more depth and combine these findings with the recent advancements regarding SARS-CoV-2. Summary: SARS-CoV-2 like other CoVs is neuroinvasive, neurotropic and neurovirulent. Two main pathways of CNS penetration seem to be the strongest candidates, the hematogenous and the neuronal. Τhe olfactory route in particular appears to play a significant role in neuroinvasion of coronaviruses and SARS-CoV-2, as well. However, existing data suggest that other routes, involving the nasal epithelium in general, lymphatic tissue and the CSF may also play roles in SARS-CoV-2 invasion into the CNS

    Unilateral thalamic infarction presenting as vertical gaze palsy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Vertical gaze palsy is a recognized manifestation of midbrain lesions. It rarely is a consequence of unilateral thalamic infarction.</p> <p>Case presentation</p> <p>We report the case of a 48-year-old African-American woman who presented to our facility with vertical gaze palsy and evidence of left medial thalamic infarct on diffusion-weighted imaging without coexisting midbrain ischemia. The etiology of infarct was determined to be small vessel disease after extensive investigation.</p> <p>Conclusions</p> <p>This report suggests a possible role of the thalamus as a vertical gaze control center. Clinicoradiological studies are needed to further define the role of the thalamus in vertical gaze control.</p

    Patients affected with Fabry disease have an increased incidence of progressive hearing loss and sudden deafness: an investigation of twenty-two hemizygous male patients

    Get PDF
    BACKGROUND: Fabry disease (FD, OMIM 301500) is an X-linked inborn error of glycosphingolipid metabolism due to the deficient activity of alpha-galactosidase A, a lysosomal enzyme. While the progressive systemic deposition of uncleaved glycosphingolipids throughout the body is known to have protean clinical manifestations, few data are available regarding the cochlear involvement. METHODS: We non-invasively investigated cochlear functions in 22 consecutive hemizygous males (age 19–64 years, mean 39) affected with classic FD. Conventional audiometry, tympanometry, ABR audiometry, otoacoustic emissions were performed in all patients, together with medical history record and physical examination as part of an exhaustive baseline evaluation prior to enzyme replacement therapy. RESULTS: A total of 12 patients (54.5%) with classic FD were found to have abnormal audition. Five patients had progressive hearing loss and seven patients (32%) experienced sudden deafness. In addition, a hearing loss on high-tone frequencies was found in 7 out of the 10 remaining patients without clinical impairment, despite their young age at time of examination. The incidence of hearing loss appeared significantly increased in FD patients with kidney failure (P < 0.01) or cerebrovascular lesions (P < 0.01), whereas there was no correlation with left ventricular hypertrophy. In addition, tinnitus aurium was also found in six patients (27%). CONCLUSION: This is the first evidence of a high incidence of both progressive hearing loss and sudden deafness in a cohort of male patients affected with classic Fabry disease. The exact pathophysiologic mechanism(s) of the cochlear involvement deserves further studies

    Enzyme replacement reverses abnormal cerebrovascular responses in Fabry disease

    Get PDF
    BACKGROUND: Fabry disease is a lysosomal X-linked enzyme deficiency of α-galactosidase A associated with an increased mortality and morbidity due to renal failure, cardiac disease and early onset stroke. METHODS: We examined the functional blood flow response of the brain after visual stimulation (reversing checkerboard pattern), and cerebral vasoreactivity following acetazolamide (15 mg/kg) with [(15)O]H(2)O and positron emission tomography (PET) in Fabry disease. Twenty-six hemizygous patients (age range 19–47 years) were enrolled in a randomized double-blind placebo-controlled 6-month trial of enzyme replacement therapy administered by intravenous infusion every two weeks. Regional cerebral blood flow (rCBF) was measured with PET at the beginning and end of the trial. RESULTS: Fabry patients had a significantly greater increase in rCBF following visual stimulation and acetazolamide challenge compared to controls. Visual reactivity was normal. The time for recovery of the cerebral vasculature following acetazolamide was prolonged in Fabry patients compared to controls. The abnormal rCBF response induced by visual stimulation and acetazolamide decreased significantly following enzyme replacement therapy, as did the prolonged recovery of the cerebral vasculature. CONCLUSIONS: Enzyme replacement therapy reverses the exaggerated cerebrovascular response in Fabry disease

    Spatiotemporal Correlations between Blood-Brain Barrier Permeability and Apparent Diffusion Coefficient in a Rat Model of Ischemic Stroke

    Get PDF
    Variations in apparent diffusion coefficient of water (ADC) and blood-brain barrier (BBB) permeability after ischemia have been suggested, though the correlation between ADC alterations and BBB opening remains to be studied. We hypothesized that there are correlations between the alteration of ADC and BBB permeability. Rats were subjected to 2 h of transient middle cerebral artery occlusion and studied at 3 and 48 h of reperfusion, which are crucial times of BBB opening. BBB permeability and ADC values were measured by dynamic contrast-enhanced MRI and diffusion-weighted imaging, respectively. Temporal and spatial analyses of the evolution of BBB permeability and ADC alteration in cortical and subcortical regions were conducted along with the correlation between ADC and BBB permeability data. We found significant increases in BBB leakage and reduction in ADC values between 3 and 48 h of reperfusion. We identified three MR tissue signature models: high Ki and low ADC, high Ki and normal ADC, and normal Ki and low ADC. Over time, areas with normal Ki and low ADC transformed into areas with high Ki. We observed a pattern of lesion evolution where the extent of initial ischemic injury reflected by ADC abnormalities determines vascular integrity. Our results suggest that regions with vasogenic edema alone are not likely to develop low ADC by 48 h and may undergo recovery

    Globotriaosylsphingosine Accumulation and Not Alpha-Galactosidase-A Deficiency Causes Endothelial Dysfunction in Fabry Disease

    Get PDF
    BACKGROUND: Fabry disease (FD) is caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA) resulting in the accumulation of globotriaosylsphingosine (Gb3) in a variety of tissues. While GLA deficiency was always considered as the fulcrum of the disease, recent attention shifted towards studying the mechanisms through which Gb3 accumulation in vascular cells leads to endothelial dysfunction and eventually multiorgan failure. In addition to the well-described macrovascular disease, FD is also characterized by abnormalities of microvascular function, which have been demonstrated by measurements of myocardial blood flow and coronary flow reserve. To date, the relative importance of Gb3 accumulation versus GLA deficiency in causing endothelial dysfunction is not fully understood; furthermore, its differential effects on cardiac micro- and macrovascular endothelial cells are not known. METHODS AND RESULTS: In order to assess the effects of Gb3 accumulation versus GLA deficiency, human macro- and microvascular cardiac endothelial cells (ECs) were incubated with Gb3 or silenced by siRNA to GLA. Gb3 loading caused deregulation of several key endothelial pathways such as eNOS, iNOS, COX-1 and COX-2, while GLA silencing showed no effects. Cardiac microvascular ECs showed a greater susceptibility to Gb3 loading as compared to macrovascular ECs. CONCLUSIONS: Deregulation of key endothelial pathways as observed in FD vasculopathy is likely caused by intracellular Gb3 accumulation rather than deficiency of GLA. Human microvascular ECs, as opposed to macrovascular ECs, seem to be affected earlier and more severely by Gb3 accumulation and this notion may prove fundamental for future progresses in early diagnosis and management of FD patients

    Mannose 6-Phosphate Receptor and Sortilin Mediated Endocytosis of α-Galactosidase A in Kidney Endothelial Cells

    Get PDF
    Prominent vasculopathy in Fabry disease patients is caused by excessive intracellular accumulation of globotriaosylceramide (GL-3) throughout the vascular endothelial cells causing progressive cerebrovascular, cardiac and renal impairments. The vascular lesions lead to myocardial ischemia, atherogenesis, stroke, aneurysm, thrombosis, and nephropathy. Hence, injury to the endothelial cells in the kidney is a key mechanism in human glomerular disease and endothelial cell repair is an important therapeutic target. We investigated the mechanism of uptake of α-galactosidase A (α-Gal A) in renal endothelial cells, in order to clarify if the recombinant enzyme is targeted to the lysosomes via the universal mannose 6-phosphate receptor (M6PR) and possibly other receptors. Immunohistochemical localization of infused recombinant α-Gal A in a renal biopsy from a classic Fabry disease patient showed that recombinant protein localize in the endothelial cells of the kidney. Affinity purification studies using α-Gal A resins identified M6PR and sortilin as α-Gal A receptors in cultured glomerular endothelial cells. Immunohistochemical analyses of normal human kidney with anti-sortilin and anti-M6PR showed that sortilin and M6PR were expressed in the endothelium of smaller and larger vessels. Uptake studies in cultured glomerular endothelial cells of α-Gal A labeled with fluorescence and 125I showed by inhibition with RAP and M6P that sortilin and M6PR mediated uptake of α-Gal A. Biacore studies revealed that α-Gal A binds to human M6PR with very high affinity, but M6PR also binds to sortilin in a way that prevents α-Gal A binding to sortilin. Taken together, our data provide evidence that sortilin is a new α-Gal A receptor expressed in renal endothelial cells and that this receptor together with the M6PR is able to internalize circulating α-Gal A during enzyme replacement therapy in patients with Fabry disease

    Focus on the management of thunderclap headache: from nosography to treatment

    Get PDF
    Thunderclap headache (TCH) is an excruciating headache characterized by a very sudden onset. Recognition and accurate diagnosis of TCH are important in order to rule out the various, serious underlying brain disorders that, in a high percentage of cases, are the real cause of the headache. Primary TCH, which may recur intermittently and generally has a spontaneous, benign evolution, can thus be diagnosed only when all other potential underlying causes have been excluded through accurate diagnostic work up. In this review, we focus on the management of TCH, paying particular attention to the diagnostic work up and treatment of the condition
    corecore