
Henry Ford Health System Henry Ford Health System 

Henry Ford Health System Scholarly Commons Henry Ford Health System Scholarly Commons 

Neurology Articles Neurology 

9-25-2020 

Unraveling the Possible Routes of SARS-COV-2 Invasion into the Unraveling the Possible Routes of SARS-COV-2 Invasion into the 

Central Nervous System Central Nervous System 

Maria Lima 

Vasileios Siokas 

Athina-Maria Aloizou 

Ioannis Liampas 

Alexios-Fotios A. Mentis 

See next page for additional authors 

Follow this and additional works at: https://scholarlycommons.henryford.com/neurology_articles 

https://scholarlycommons.henryford.com/
https://scholarlycommons.henryford.com/neurology_articles
https://scholarlycommons.henryford.com/neurology
https://scholarlycommons.henryford.com/neurology_articles?utm_source=scholarlycommons.henryford.com%2Fneurology_articles%2F499&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Maria Lima, Vasileios Siokas, Athina-Maria Aloizou, Ioannis Liampas, Alexios-Fotios A. Mentis, Zisis 
Tsouris, Anastasios Papadimitriou, Panayiotis D. Mitsias, Aristidis Tsatsakis, Dimitrios P. Bogdanos, 
Stavros J. Baloyannis, and Efthimios Dardiotis 



Curr Treat Options Neurol (2020) 22: 37
DOI 10.1007/s11940-020-00647-z

Reflections from the COVID Pandemic (A Iranzo and M Rosenfeld, Section Editors)

Unraveling the Possible Routes
of SARS-COV-2 Invasion
into the Central Nervous
System
Maria Lima, MD1

Vasileios Siokas, MD, PhD1

Athina-Maria Aloizou, MD1

Ioannis Liampas, MD, MSc1

Alexios-Fotios A. Mentis, MD, PhD, PMC, MPH1,2

Zisis Tsouris, MD, MSc1

Anastasios Papadimitriou, MD1

Panayiotis D. Mitsias, MD, PhD3,4,5

Aristidis Tsatsakis, PhD, DSc6

Dimitrios P. Bogdanos, MBA, MD, PhD7

Stavros J. Baloyannis, MD, PhD8

Efthimios Dardiotis, MD, PhD1,*

Address
*,1Department of Neurology, Laboratory of Neurogenetics, University of Thessaly,
University Hospital of Larissa, Larissa, Greece
Email: edar@med.uth.gr
2Public Health Laboratories, Hellenic Pasteur Institute, Athens, Greece
3Department of Neurology, School of Medicine, University of Crete, 71003, Her-
aklion, Greece
4Department of Neurology, Henry Ford Hospital, Detroit, MI, 48202, USA
5School of Medicine, Wayne State University, Detroit, MI, 48202, USA
6Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Her-
aklion, Greece
7Department of Rheumatology and clinical Immunology, University General Hos-
pital of Larissa, Faculty of Medicine, School of Health Sciences, University of
Thessaly, Larissa, Greece
8Research Institute for Alzheimer’s Disease, Aristotelian University of Thessalo-
niki, Thessaloniki, Greece
Published online: 25 September 2020
* Springer Science+Business Media, LLC, part of Springer Nature 2020

This article is part of the Topical Collection on Reflections from the COVID Pandemic

http://crossmark.crossref.org/dialog/?doi=10.1007/s11940-020-00647-z&domain=pdf
http://orcid.org/0000-0003-2957-641X


Keywords SARS-CoV-2 I SARS-2 I COVID-19 I Pandemic I Neuroinvasion I CNS penetration I Neurological
manifestations I Coronaviruses (CoVs) I Neurotropism I Neurovirulence

Abstract

Purpose of Review To describe the possible neuroinvasion pathways of Severe Acute
Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2), the virus responsible for the
Coronavirus disease-19 (Covid-19) pandemic.
Recent Findings We present data regarding the family of Coronaviruses (CoVs) and the
central nervous system (CNS), and describe parallels between SARS-CoV-2 and other
members of the family, which have been investigated in more depth and combine these
findings with the recent advancements regarding SARS-CoV-2.
Summary SARS-CoV-2 like other CoVs is neuroinvasive, neurotropic and neurovirulent. Two
main pathways of CNS penetration seem to be the strongest candidates, the hematoge-
nous and the neuronal. Τhe olfactory route in particular appears to play a significant role
in neuroinvasion of coronaviruses and SARS-CoV-2, as well. However, existing data
suggest that other routes, involving the nasal epithelium in general, lymphatic tissue
and the CSF may also play roles in SARS-CoV-2 invasion into the CNS.

Introduction

Coronaviruses (CoVs) are a large family of viruses, ca-
pable of infecting many species of birds and mammals
[1–3]. There are seven coronaviruses known to infect
humans, called human coronaviruses (HCoVs) [4–6].
Clinically, infection with a coronavirus can be either
asymptomatic or present with respiratory, gastrointesti-
nal (GI), and neurological symptoms [7]. Four HCoVs,
namely 229E, OC43, HKU1, NL63, are not considered
to be very pathogenic [8, 9], while the rest, Severe Acute

Respiratory Syndrome-related Coronavirus (SARS-CoV)
and Middle East Respiratory Syndrome-related Corona-
virus (MERS-CoV) have caused two epidemics so far [8,
10–12], and the novel SARS-CoV-2 caused the current
pandemic [13–16]; all these viral strands can lead to
acute respiratory failure.

In this review,we aim to shed some light into how this
novel virus can impact the central nervous system (CNS)
by describing the routes of its invasion into the CNS.

Presence of coronaviruses in the CNS

Many studies have shown that coronaviruses are neuroinvasive, neurotropic,
and neurovirulent in animals and humans [17–22]. In animals, the mouse
hepatitis virus (MHV), amember of the coronavirus family, can infect microglia
and astrocytes [23], as well as Koppler cells at choroid plexuses; a systemic
model of infectionwith SARS-CoV showed that the virus reached the brain [24].
It has also been reported that human coronaviruses have the ability to infect
primary cultures of human neural cells, fetal and adult astrocytes, adult micro-
glia and adult oligodendrocytes [25–27]. [Fig. 1].

The detection of HCoVs in human CNS samples was described in the early
1980s, in autopsy tissues of patients with Multiple Sclerosis (MS) [28]. RNA
from endemic prototype HCoV strains OC43 and 229E has also been detected
in human brain samples [19], and can persist over time [29]. Neurological
manifestations have also been described in the symptom constellation of the
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two previous epidemics of MERS- [30, 31] and SARS-CoV [32], where the virus
was also detected in cerebrospinal fluid (CSF) [21, 32, 33]. More specifically, it
was shown that SARS-CoV could induce cerebral edema and meningeal vaso-
dilation [34], neuronal morphological changes in the cortex and hypothalamus
[35], neuronal ischemic lesions and necrosis, glial hyperplasia [36] and demy-
elination, while its genome sequences (viral particles) have also been detected
in brain samples of infected patients [34–41].

Consequently, it comes as no surprise that a SARS-CoV-2 infection may
present with neurological manifestations and CNS symptoms at high rates [42,
43], such as headache, confusion [44] and sensory disturbances, namely anos-
mia and ageusia [42•]. Additionally, entities such as encephalitis [45], acute
cerebrovascular diseases [42, 46], acute necrotizing encephalopathy (ANE) [47],
as well as demyelination and neuropathy [22] have also been reported in the
current pandemic. Furthermore, the presence of SARS-CoV-2 has been estab-
lished in the CSF of patients with acute neurologic symptoms, like seizures [48,
49] or encephalitis [45], at times combined with MRI findings pertaining to the
condition at hand [48•]. Post-mortem examination of SARS-CoV-2-infected
patients revealed the presence of SARS-CoV-2 in endothelial cells and pericytes
of brain capillaries [50•] and neurons [50, 51], further confirming the presence
of SARS-CoV-2 in the CNS. It has also been postulated that the presence of the
virus in areas of the medulla, and the cardiorespiratory center in particular, may
be one of the likely causes of COVID-19’s respiratory failure [22, 52].

Routes of neuroinvasion

It was quickly established that SARS-CoV-2 binds to the receptor of the Angiotensin
Converting Enzyme 2 (ACE2) with higher affinity than the other HCoVs, due to

Fig. 1. A normal neuron and a neuron and astrocytes as infected with coronavirus.
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some structural differences in its “Receptor BindingDomain” of the S spike protein
(S) [15, 53, 54]. Receptors of ACE2 exist in almost all human organs [55, 56], as
well as in endothelial cells [52] and the CNS [55] [Fig. 2]. As such, it is highly likely
that SARS-CoV-2, similarly to SARS-CoV [57, 58], makes use of these receptors in
order to penetrate these tissues and trigger the perpetuation of immune responses
[59] or finally invade the CNS, via the different pathways that we describe below.

The HEMATOGENOUS pathway

Viremia
Viremia follows the primary infection, and is the phase whenmost neurotropic
viruses are present into the bloodstream, where they possibly stay for a period
of time, before they finally reach the CNS [60]. Although HCoVs seem to
mainly infect the respiratory tract and be self-restricting, they can potentially
disrupt the epithelium barrier and invade the bloodstream [18]. Type II alveolar
epithelial cells, which highly express ACE2, are the cells mainly infected by
SARS-CoVs [39], thus allowing entrance of the virus to the blood circulation.
Another possible pathway to the blood circulation could be through the epi-
thelial cells of the GI tract [59], which also express ACE2 receptors and can be
infected by SARS-CoV-2 [61–63]. While other pathways cannot be excluded,
passage through the respiratory tract is the most plausible scenario.

Penetration through the Blood-brain- barrier
Once in the blood circulation, SARS-CoV-2 could bind to the ACE2 receptors of
the endothelium [50, 52, 55] and disrupt the Blood Brain Barrier (BBB), inducing
edema, intracranial hypertension and/or penetration of the virus in the CNS [64,
65]. Neuroinvasion has been described for other coronaviruses in the past [29,
66]. In greater detail, Cabirac et al. (1993) showed that intravenous (IV) inocu-
lation with MHV in owl monkeys led to brain and spinal cord infection, with the
presence of viral RNA and/or antigen in the brain sites of inflammation, the
blood vessels, and the endothelium [67]. Additionally, MERS-CoV can access the
bloodstream, subsequently infecting endothelial cells in vivo [68]. Finally, Paniz-
Mondolfi et al., (2020) observed viral-like particles of SARS-CoV-2 in the endo-
thelial cells and pericytes of brain capillaries as well as astrocytic processes, which
actively overrode the BBB [50•], strongly supporting a hematogenous-
endothelial neuroinvasion-based hypothesis for SARS-CoV-2.

In a similar way, it can be postulated that SARS-CoV-2 could also infect the
endothelial cells of the blood-cerebrospinal fluid barrier (BCSFB), and then
spread into the CNS. Moreover, the choroid plexus and the circumventricular
cerebral organs are not protected by the BBB, and could thus be gates for the
penetration of a virus into the CNS [69].

SARS-CoV-2 could also enter the CNS under conditions promoting an
increase of the permeability of the BBB, as a result of the release of inflamma-
tory mediators (chemokines, cytokines) [70], and even a cytokine storm, fol-
lowing inflammation or hypoxemia induced by the respiratory distress syn-
drome, or even psychological stress [59, 71–73]. This paracellular transmigra-
tion pathway is mainly mediated by the destabilization or disruption of the
tight junctions of the BBB [69].
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Peripheral immune cell transmigration - the “trojan horse” mechanism
SARS-CoV-2 could also infect bloodstream leukocytes (mainly monocytes/
macrophages) [65] and myeloid cells, which become a viral pool for the
diffusion of the virus towards the CNS [69, 74, 75]. SARS-CoV can infect
lymphocytes and monocytes near the vessel wall [34, 35, 38] and seems to use

Figure 2. Entry of the virus into the host CNS-related cell and further spread. The single-stranded RNA (ssRNA) genome of
Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2) encodes large polyproteins, which are proteolytically
cleaved into 16 non-structural proteins (nsps). In addition, 9–12 ORFs are encoded through the transcription of a nested set of
subgenomic RNAs. The virus forms spherical particles consisting of four structural proteins: the envelope glycoprotein spike (S), the
envelope (E) and membrane (M) transmembrane glycoproteins incorporated in the virion, and the protein nucleocapsid (N). The
surface protein of the virus binds to its receptors, such as ACE 2. Following the entry of the virus into the host cell (such as the
neuron), and the release of the viral genome, the viral RNA is uncoated in the cytoplasm. Translation of the viral polymerase protein
is followed by RNA replication and subgenomic transcription; ORF1a and ORF1ab are translated to create pp1a and pp1ab, which are
cleaved by the proteases that are encoded by ORF1a to produce 16 nsps that form the RNA replicase–transcriptase complex. During
the phase of replication, full-length (−)RNA copies of the genome are shaped and form templates for full-length (+)RNA genomes.
Subgenomic (−)RNAs are transcribed into subgenomic (+)mRNAs. The step of translation is followed by the assembling of the
resulting structural proteins into the nucleocapsid and viral envelope at the ER–Golgi intermediate compartment (ERGIC), followed
by release of the nascent virion from the infected neuron cell. Created with a modified Biorender template (under license) as per de
Wit et al. Nature Reviews Microbiology volume 14, pages523–534(2016).
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this “Trojan Horse” mechanism [18, 76]. Other coronaviruses present similar
abilities; MHV can infect macrophages [23], while HCoV-OC43 and HCoV-
229E can infect human monocytes/macrophages [76, 77]. In addition, HCoV-
229E was able to infect murine and human dendritic cells in vitro [78], which
express the human aminopeptidase N (CD13) leading to their subsequent
activation [79]. SARS-CoV is also speculated to have as a binding receptor, the
human CD13 [80]. It has been shown to infect immune cells, monocytes,
macrophages and T lymphocytes in particular, which are consistently reduced
in these patients (lymphopenia), even at early disease stages [35], something
that has been reported for SARS-CoV-2 patients as well [42•]. Thus, we can
hypothesize that SARS-CoV-2 uses immune circulating cells [42•] and dendritic
cells to disseminate into other tissues and the CNS. It is possible that
monocytes/macrophages could also be a “future” source of SARS-CoV-2, as is
the case of other HCoVs [19], since the infection of these leukocytic cell lines
can persist over time [76].

The neuronal pathway
Another possible pathway for the penetration into the CNS for SARS-CoV-2
could be the neuronal pathway. Some viruses can invade from the nerve
“ending”, i.e. the peripheral nerves [64, 81]. However, some viruses can invade
from the nerve “ending”, i.e. the peripheral nerves [81], and by the mechanism
of active transport within the neurons, more specifically through the motor
proteins kinesin and dynein [69], and via microtubules, travel in a retrograde
way and reach the CNS [82]. These neurons could be motor, sensory or
autonomic neurons, but are most often olfactory neurons [69, 81, 83].

Τhere is growing evidence that CoVs may initially infect peripheral nerve
endings and then enter the CNS through a synapse-connected route [84–86].
This trans-synaptic transmission has been well documented for some CoVs,
such as HEV67 [84, 85, 87, 88]. There is also data supporting the notion that
HCoV-OC43 might also penetrate the CNS through cranial peripheral nerves
[40], as occurs with other respiratory viruses [respiratory syncytial virus (RSV)
and influenza virus] [81]. Dubé et.al (2018) showed that viral particles could be
passively released/diffused or transported via axonal transport (neuron-to-
neuron) by axoplasmic flow in cell cultures [40]. It also appears that neurons
are very sensitive to SARS-CoV infection, due to their host cell receptors [39].
More specifically, the S1 unit of the S protein of the virus binds to ACE2 receptor
of the neuron and with the action of the serine protease transmembrane
protease, serine 2 (TMPRSS2) activates the S protein, that allows the virus to
invade the neuron [89].

The olfactory pathway
The olfactory pathway is an excellent neuronal pathway for neuroinvasive
respiratory viruses [81] that access the body intranasally [64], as the olfactory
nerve communicates both with the nasal epithelium and the olfactory bulb [64,
69]. This pathway seems to be one possible mechanism of neuroinvasion for
coronaviruses, including SARS-CoV-2 [39, 90, 91].

In animal models, intranasal inhalation of CoVs can lead to cerebral infec-
tion. For example, MHV induced infection in mice, and its RNA was detected in
brain and muscles [92]. HCoV-OC43 also invades the CNS via the
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neuroepithelium and starts neuropropagation at the olfactory bulbs [40, 92,
93]. It has been reported that 3 days after nasal inoculation in mice, viral
antigens of HCoV-OC43 can be found in the olfactory bulb [both in the
olfactory sensory neurons (OSN) and in dendrites-associated cilia [40]] while
no virus is found in perivascular blood cells or other CNS sites [93]. The virus
then has the ability to reach highly susceptible regions of the cortex, the
mesolimbic cortex or other areas associated with olfaction [40], such as the
hippocampus and the amygdala, and finally through trans-neuronal propaga-
tion, it may reach the brainstem and the spinal cord [94]. The virus can be
detected in the entirety of the brain just 7 days after the nasal inoculation,
suggesting a relatively rapid dissemination once it invades the CNS, leading to
acute encephalitis and death [93]. Moreover, ablation of the olfactory bulb after
nasal infection of MHV blocked the spread [95], strongly supporting the olfac-
tory pathway dissemination theory. SARS-CoV, which is homologous to SARS-
CoV-2, was also detected in the CNS of susceptible mice after intranasal infec-
tion, showing its neuroinvasive capabilities [39, 73]. More specifically, Netland
et al. (2008) detected SARS-CoV in the olfactory bulb of mice approximately
3 days after nasal inhalation, and in the mesolimbic cortex only 1 day later, in
addition to other brain regions and the brainstem, invading almost the entirety
of the brain [39].

Other neuronal routes
SARS-CoV-2might also be transferred to the CNS through the trigeminal nerve,
which innervates nociceptive cells in the nasal cavity, and has been successfully
tested for drug transportation [96, 97]. Sensory nerve endings of the trigeminal
nerve also exist in the conjunctiva, where SARS-CoV-2 RNA fragments have
been found in a patient with conjunctivitis [98], and in the taste buds, ascend-
ing not only in trigeminal nuclei, but also to the nuclei of the solitary tract [59].

It has been demonstrated that some viruses, such as influenza, can enter the
CNS via the sensory fiber of the vagus nerve in the respiratory tract [81, 86, 99–
101]. This also represents another communication route between the emesis
center, the vagus nerve and the GI tract, which may play a role in this retrograde
penetration of the SARS-CoV-2 to the CNS [59]. In addition, local peripheral
nerves from the GI systemmight be infected, as SARS-CoV-2 also infects the GI
tract [61–63]. As noted above, many researchers have demonstrated that the
brain stem is an area that is particularly infected by SARS-CoV [39, 73] and
MERS-CoV [91]; this adds support to the notion that through trans-synaptic
transmission, SARS-CoV-2 might also infect the brainstem from the respiratory
system [52]. However, no direct proof that SARS-CoV-2 and HCoVs use the
vagus nerve for neuroinvasive purposes has been published [59].

The neurogenic hypothesis
It is worth mentioning that dyspnea may stem from the primary CNS infection,
mainly through the olfactory mechanism that leads to the brainstem, where the
stem nuclei and the solitary tract are connected to the respiratory system [52,
102]. Netland et al. (2008) demonstrated that the main gate of SARS-CoV
infection in mice was the olfactory pathway and could lead to death. However,
the presence of the virus in lungs was low suggesting that infected neurons in
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the medulla and the cardiorespiratory center were responsible for this outcome
[39]. This scenario proposes that direct infection of the CNS might be the
primary gate of the virus in the organism [39, 52]. Additionally, postmortem
examination of SARS-CoV patients detected viral particles in the brain almost
exclusively in neurons, rather than in glia [34–36], adding more support to the
neuronal rather than the hematogenous pathway.

Lymphatic tissue and CSF
A recent study found that the genes for ACE2 receptors and TMPRSS2, respon-
sible for the binding of SARS-CoV-2, are expressed in the olfactory epithelial
support and stem cells, but not in the olfactory sensory neurons (OSN) of mice
and humans [103]. It has also been demonstrated that nasal inoculation of
HCoV-229E to human volunteers disrupted the nasal epithelium, damaging
and decreasing the number of the ciliated cells [104]. Perineural spaces of
olfactory nerves and the nasal lymphatic tissue are important for drainage of the
CSF, as they communicate with the CSF through channels made by the
ensheathing cells [105, 106]. That means that the nasal olfactory epithelium
and its lymphatic tissue may contribute to SARS-CoV-2 neuroinvasion in
another indirect pathway.

Lymphatic endothelial cells express receptors of CD209L, another receptor
for SARS-CoVs, with lower affinity than ACE2 that is expressed mainly in
lymphatic and liver tissues [107, 108]. It has been described that human hilar
and mesenteric lymph nodes can be invaded by SARS-CoV [109, 110]. It is not
unreasonable to hypothesize that other lymphatic networks, like those in oral
tissues [111] or in the ocular mucosa [112] could be targets for SARS-CoV-2.
Following this train of thought, the case of a patient presenting with seizures
and SARS-CoV-2 in the CSF, 10 days after conjunctivitis [49], demonstrates
possible neuroinvasion through the conjunctiva. According to this theory,
viremia could be the sequela of infection of lymphatic tissue in the affected
organ, such as the respiratory or GI tract [18, 59], leading to the neuroinvasion
via the aforementioned hematogenous route.

The CNSmicroenvironment following SARS-CoV-2 infection is presented at
Fig. 3 [Fig. 3].

Conclusions

In an attempt to understand the possible mechanisms of SARS-CoV-2
neuroinvasion, it is reasonable to study the neuroinvasive behavior of
known CoVs that have been studied for a longer period of time. The
two basic common pathways for viral neuroinvasion that have been
better described so far are hematogenous and neuronal. It has been
demonstrated that coronaviruses can use either pathway to achieve CNS
penetration. SARS-CoV-2 seems to not be an exception, as it shares
common features with the other coronaviruses and can induce neuro-
logical symptoms. There are indications that SARS-CoV-2 can take ad-
vantage of both the hematogenous and neuronal routes, as it principally
uses the ACE2 receptor that exists in circulatory and nervous systems. In
addition, SARS-CoV-2 may also penetrate lymphatic tissues leading to
entrance to the CNS.
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Based on the data presented in this review, the CNS may be affected
by a subsequent effect of a primary systemic infection, through hema-
togenous or neuronal pathways. However, the CNS may also be the
primary entry organ, infected mainly through the olfactory route, via
which the virus enters the boby and spreads to other systems. In that
case, the aforementioned “neurogenic hypothesis” is reinforced, and this
invasion route could be particularly dangerous, as it could lead to the
infection of the brainstem and the respiratory center, causing respiratory
failure. More research is needed to confirm these hypotheses and will
lead to more efficient therapeutic and preventive strategies.

Fig. 3. The CNS microenvironment following SARS-CoV-2 infection. Spread of SARS-CoV-2 from lungs to the CNS can most likely
be achieved through the haematogenous route. In addition, it can enter the CNS through the olfactory bulb, and once the infectious
agent persists due to the inability of the immune system to control/suppress viral replication, the virus may reach the whole brain
and the CSF, and participate in demyelination. In the hematogenous route, SARS-CoV-2 may gain access by infecting endothelial
cells of the blood-brain-barrier, epithelial cells of the blood-cerebrospinal fluid barrier in the choroid plexus, or it may indeed use
inflammatory cells as “Trojan horse” to obtain access into the CNS. Experimental data suggest that primary glial cultures can secrete
a series of inflammatory cytokines participating in the perpetuation of viral infection and further inflicting CNS tissue damage. The
role of astrocytes in the machinery of SARS-CoV-2 mediated CNS pathology is yet undetermined and remains to be defined.
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