16,343 research outputs found

    Nuclear quantum effects in ab initio dynamics: theory and experiments for lithium imide

    Full text link
    Owing to their small mass, hydrogen atoms exhibit strong quantum behavior even at room temperature. Including these effects in first principles calculations is challenging, because of the huge computational effort required by conventional techniques. Here we present the first ab-initio application of a recently-developed stochastic scheme, which allows to approximate nuclear quantum effects inexpensively. The proton momentum distribution of lithium imide, a material of interest for hydrogen storage, was experimentally measured by inelastic neutron scattering experiments and compared with the outcome of quantum thermostatted ab initio dynamics. We obtain favorable agreement between theory and experiments for this purely quantum mechanical property, thereby demonstrating that it is possible to improve the modelling of complex hydrogen-containing materials without additional computational effort

    Non-adiabatic Kohn-anomaly in a doped graphene monolayer

    Full text link
    We compute, from first-principles, the frequency of the E2g, Gamma phonon (Raman G-band) of graphene, as a function of the charge doping. Calculations are done using i) the adiabatic Born-Oppenheimer approximation and ii) time-dependent perturbation theory to explore dynamic effects beyond this approximation. The two approaches provide very different results. While, the adiabatic phonon frequency weakly depends on the doping, the dynamic one rapidly varies because of a Kohn anomaly. The adiabatic approximation is considered valid in most materials. Here, we show that doped graphene is a spectacular example where this approximation miserably fails.Comment: 5 pages, 3 figures, Accepted by Phys. Rev. Let

    Dark Radiation in LARGE Volume Models

    Full text link
    We consider reheating driven by volume modulus decays in the LARGE Volume Scenario. Such reheating always generates non-zero dark radiation through the decays to the axion partner, while the only competitive visible sector decays are Higgs pairs via the Giudice-Masiero term. In the framework of sequestered models where the cosmological moduli problem is absent, the simplest model with a shift-symmetric Higgs sector generates 1.56 < N_{eff} - N_{eff,SM} < 1.74. For more general cases, the known experimental bounds on N_{eff} strongly constrain the parameters and matter content of the models.Comment: 6 pages; v2. refs update

    Sub-ohmic two-level system representation of the Kondo effect

    Full text link
    It has been recently shown that the particle-hole symmetric Anderson impurity model can be mapped onto a Z2Z_2 slave-spin theory without any need of additional constraints. Here we prove by means of Numerical Renormalization Group that the slave-spin behaves in this model like a two-level system coupled to a sub-ohmic dissipative environment. It follows that the Z2Z_2 symmetry gets spontaneously broken at zero temperature, which we find can be identified with the on-set of Kondo coherence, being the Kondo temperature proportional to the square of the order parameter. Since the model is numerically solvable, the results are very enlightening on the role of quantum fluctuations beyond mean field in the context of slave-boson approaches to correlated electron models, an issue that has been attracting interest since the 80's. Finally, our results suggest as a by-product that the paramagnetic metal phase of the Hubbard model at half-filling, in infinite coordination lattices and at zero temperature, as described for instance by Dynamical Mean Field Theory, corresponds to a slave-spin theory with a spontaneous breakdown of a local Z2Z_2 gauge symmetry.Comment: 4 pages, 5 figure

    De Sitter String Vacua from Dilaton-dependent Non-perturbative Effects

    Full text link
    We consider a novel scenario for modulus stabilisation in IIB string compactifications in which the Kahler moduli are stabilised by a general set-up with two kinds of non-perturbative effects: (i) standard Kahler moduli-dependent non-perturbative effects from gaugino condensation on D7-branes or E3-instantons wrapping four-cycles in the geometric regime; (ii) dilaton-dependent non-perturbative effects from gaugino condensation on space-time filling D3-branes or E(-1)-instantons at singularities. For the LARGE Volume Scenario (LVS), the new dilaton-dependent non-perturbative effects provide a positive definite contribution to the scalar potential that can be arbitrarily tuned from fluxes to give rise to de Sitter vacua. Contrary to anti D3-branes at warped throats, this term arises from a manifestly supersymmetric effective action. In this new scenario the "uplifting" term comes from F-terms of blow-up modes resolving the singularity of the non-perturbative quiver. We discuss phenomenological and cosmological implications of this mechanism. This set-up also allows a realisation of the LVS for manifolds with zero or positive Euler number.Comment: 22 pages + two appendices, typos correcte

    A Note on the Magnitude of the Flux Superpotential

    Full text link
    The magnitude of the flux superpotential WfluxW_{flux} plays a crucial role in determining the scales of IIB string compactifications after moduli stabilisation. It has been argued that values of WfluxW_{flux} much less than one are preferred, and even required for physical and consistency reasons. This note revisits these arguments. We establish that the coupling (g) of heavy Kaluza-Klein modes to light states scales as MKK/MPl{M_{KK} / M_{Pl}} (hence is suppressed by two third powers of the inverse volume of compactification) and argue that consistency of the superspace derivative expansion requires gF/M2∼m3/2/MKK<<1gF/M^2 \sim m_{3/2}/ M_{KK} << 1, where FF is the auxiliary field of the light fields and MM the ultraviolet cutoff. This gives only a mild constraint on the flux superpotential, Wflux<<V1/3W_{flux} << V^{1/3} (where V is the volume of the compactification), which can be easily satisfied for order one values of WfluxW_{flux}. This regime is also statistically favoured and makes the Bousso-Polchinski mechanism for the vacuum energy hierarchically more efficient.Comment: 14 page
    • …
    corecore