177 research outputs found

    Simulation and Control Lab Development for Power and Energy Management for NASA Manned Deep Space Missions

    Get PDF
    The development of distributed hierarchical and agent-based control systems will allow for reliable autonomous energy management and power distribution for on-orbit missions. Power is one of the most critical systems on board a space vehicle, requiring quick response time when a fault or emergency is identified. As NASAs missions with human presence extend beyond low earth orbit autonomous control of vehicle power systems will be necessary and will need to reliably function for long periods of time. In the design of autonomous electrical power control systems there is a need to dynamically simulate and verify the EPS controller functionality prior to use on-orbit. This paper presents the work at NASA Glenn Research Center in Cleveland, Ohio where the development of a controls laboratory is being completed that will be utilized to demonstrate advanced prototype EPS controllers for space, aeronautical and terrestrial applications. The control laboratory hardware, software and application of an autonomous controller for demonstration with the ISS electrical power system is the subject of this paper

    Transport and Spectroscopic Studies of the Effects of Fullerene Structure on the Efficiency and Lifetime of Polythiophene-based Solar Cells

    Get PDF
    Time-dependent measurements of both power conversion efficiency and ultraviolet-visible absorption spectroscopy have been observed for solar cell blends containing the polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) with two different functionalized C60 electron acceptor molecules: commercially available [6,6]-phenyl C61 butyric acid methyl ester (PCBM) or [6,6]-phenyl C61 butyric acid octadecyl ester (PCBOD) produced in this laboratory. Efficiency was found to decay with an exponential time dependence, while spectroscopic features show saturating exponential behavior. Time constants extracted from both types of measurements showed reasonable agreement for samples produced from the same blend. In comparison to the PCBM samples, the stability of the PCBOD blends was significantly enhanced, while both absorption and power conversion efficiency were decreased.Comment: manuscript submitted to Solar Energy Materials and Solar Cell

    Time-dependent efficiency measurements of polymer solar cells with dye additives: unexpected initial increase of efficiency

    Get PDF
    We report the effects of the addition of two azo-dye additives on the time-dependent efficiency of polymer solar cells. Although the maximum efficiencies of devices containing different amounts of dye do not vary greatly over the selected concentration range, the time dependence results reveal a surprising initial increase in efficiency in some samples. We observe this effect to be correlated with a leakage current, although a specific mechanism is not yet identified. We also present the measured lifetimes of these solar cells, and find that variations in dye concentrations produce a small effect at most. Characterization of the bulk heterojunction layer (active layer) morphology using atomic-force microscope (AFM) imaging reveals reordering patterns which suggest that the primary effects of the dyes arise via structural, not absorptive, characteristics

    Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Get PDF
    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low Earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond low Earth orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described

    Overview of Intelligent Power Controller Development for Human Deep Space Exploration

    Get PDF
    Intelligent or autonomous control of an entire spacecraft is a major technology that must be developed to enable NASA to meet its human exploration goals. NASA's current long term human space platform, the International Space Station, is in low earth orbit with almost continuous communication with the ground based mission control. This permits the near real-time control by the ground of all of the core systems including power. As NASA moves beyond Low Earth Orbit, the issues of communication time-lag and lack of communication bandwidth beyond geosynchronous orbit does not permit this type of operation. This paper presents the work currently ongoing at NASA to develop an architecture for an autonomous power control system as well as the effort to assemble that controller into the framework of the vehicle mission manager and other subsystem controllers to enable autonomous control of the complete spacecraft. Due to the common problems faced in both space power systems and terrestrial power system, the potential for spin-off applications of this technology for use in micro-grids located at the edge or user end of terrestrial power grids for peak power accommodation and reliability are described

    Influence of functionalized fullerene structure on polymer photovoltaic degradation

    Get PDF
    The time dependence of device performance has been measured for photocells using blends containing the conjugated polymer, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with two different functionalized C60 electron acceptor molecules: commercially available [6,6]-phenyl C61 butyric acid methyl ester (PCBM) or [6,6]-phenyl C61 butyric acid octadecyl ester (PCBOD) produced in this laboratory. Performance was characterized by the short-circuit current output of the devices, with the time dependence of PCBM samples typically degrading exponentially. Variations in the characteristic lifetime of the devices were observed to depend on the molar fraction of the electron acceptor molecules (calculated with respect to the MEH-PPV monomer fraction). In comparison to the PCBM samples, the stability of the PCBOD blends was significantly enhanced, with a one or two order of magnitude improvement. Corresponding spectroscopic data with similar time evolution as the transport measurements suggest an independent means for determining and understanding degradation mechanisms

    Structure–function relationships of fullerene esters in polymer solar cells: unexpected structural effects on lifetime and efficiency

    Get PDF
    We report both transport measurements and spectroscopic data of polymer/fullerene blend photovoltaics using a small library of fullerene esters to correlate device properties with a range of functionality and structural diversity of the ester substituent. We observe that minor structural changes can lead to significant and surprising differences in device efficiency and lifetime. For example we have found that isomeric R-groups in the fullerene ester-based devices we have studied have dramatically different efficiencies. The characteristic lifetimes derived from both transport and spectroscopic measurements are generally comparable; however, some more rapid effects in specific fullerene esters are not observed spectroscopically. It is apparent from our results that each fullerene derivative requires re-optimization to reveal the best device performance. Furthermore we conclude that a library approach is essential for evaluating the effects of structural differences in the constituent molecules and serves as important device optimization method that is not being currently employed in photovoltaic investigations
    • …
    corecore