1,317 research outputs found

    A two-compartment mechanochemical model of the roles of\ud transforming growth factor β and tissue tension in dermal wound healing

    Get PDF
    The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor−β (TGFβ) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGFβ and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGFβ in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGFβ significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures

    A fibrocontractive mechanochemical model of dermal wound\ud closure incorporating realistic growth factor kinetics

    Get PDF
    Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: the cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched

    Saffman-Taylor fingers with kinetic undercooling

    Get PDF
    The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this 'selection' of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analogue with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension, and numerically taking the limit that the surface tension vanishes.Comment: 10 pages, 6 figures, accepted for publication by Physical Review

    Modulation of phosphatidylinositol 4-phosphate levels by CaBP7 controls cytokinesis in mammalian cells

    Get PDF
    Calcium and phosphoinositide signaling regulate cell division in model systems, but their significance in mammalian cells is unclear. Calcium-binding protein-7 (CaBP7) is a phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ) inhibitor required during cytokinesis in mammalian cells, hinting at a link between these pathways. Here we characterize a novel association of CaBP7 with lysosomes that cluster at the intercellular bridge during cytokinesis in HeLa cells. We show that CaBP7 regulates lysosome clustering and that PI4KIIIβ is essential for normal cytokinesis. CaBP7 depletion induces lysosome mislocalization, extension of intercellular bridge lifetime, and cytokinesis failure. These data connect phosphoinositide and calcium pathways to lysosome localization and normal cytokinesis in mammalian cells

    Pathologic Correlation of PET-CT Based Auto Contouring for Radiation Planning in Lung Cancer

    Get PDF
    Purpose/Objective(s): Radiation therapy in lung cancer relies on CT and functional imaging (FDG-PET) to delineate tumor volumes. Semi-automatic contouring tools have been developed for PET to improve on the inter-observer bias of manual contouring and intrinsic differences in imaging equipment. A common method involves using a threshold at a given percentage of the max activity, which may be less accurate with smaller tumors and tumors with low source to background ratio. To overcome this deficiency, a gradient algorithm, which detects changes in image counts at the border of the tumor, has been developed. Few studies have correlated these methods to pathological specimens. American Society for Therapeutic Radiation Oncology (ASTRO) 52nd Annual Meeting October 31 - November 4, San Diego, C

    U-Boats in the Bay of Biscay: An Essay in Operations Analysis

    Get PDF

    Wide-Scale Analysis of Human Functional Transcription Factor Binding Reveals a Strong Bias towards the Transcription Start Site

    Get PDF
    We introduce a novel method to screen the promoters of a set of genes with shared biological function, against a precompiled library of motifs, and find those motifs which are statistically over-represented in the gene set. The gene sets were obtained from the functional Gene Ontology (GO) classification; for each set and motif we optimized the sequence similarity score threshold, independently for every location window (measured with respect to the TSS), taking into account the location dependent nucleotide heterogeneity along the promoters of the target genes. We performed a high throughput analysis, searching the promoters (from 200bp downstream to 1000bp upstream the TSS), of more than 8000 human and 23,000 mouse genes, for 134 functional Gene Ontology classes and for 412 known DNA motifs. When combined with binding site and location conservation between human and mouse, the method identifies with high probability functional binding sites that regulate groups of biologically related genes. We found many location-sensitive functional binding events and showed that they clustered close to the TSS. Our method and findings were put to several experimental tests. By allowing a "flexible" threshold and combining our functional class and location specific search method with conservation between human and mouse, we are able to identify reliably functional TF binding sites. This is an essential step towards constructing regulatory networks and elucidating the design principles that govern transcriptional regulation of expression. The promoter region proximal to the TSS appears to be of central importance for regulation of transcription in human and mouse, just as it is in bacteria and yeast.Comment: 31 pages, including Supplementary Information and figure

    The endogenous cell-fate factor dachshund restrains prostate epithelial cell migration via repression of cytokine secretion via a cxcl signaling module.

    Get PDF
    Prostate cancer is the second leading form of cancer-related death in men. In a subset of prostate cancer patients, increased chemokine signaling IL8 and IL6 correlates with castrate-resistant prostate cancer (CRPC). IL8 and IL6 are produced by prostate epithelial cells and promote prostate cancer cell invasion; however, the mechanisms restraining prostate epithelial cell cytokine secretion are poorly understood. Herein, the cell-fate determinant factor DACH1 inhibited CRPC tumor growth in mice. Using Dach1(fl/fl)/Probasin-Cre bitransgenic mice, we show IL8 and IL6 secretion was altered by approximately 1,000-fold by endogenous Dach1. Endogenous Dach1 is shown to serve as a key endogenous restraint to prostate epithelial cell growth and restrains migration via CXCL signaling. DACH1 inhibited expression, transcription, and secretion of the CXCL genes (IL8 and IL6) by binding to their promoter regulatory regions in chromatin. DACH1 is thus a newly defined determinant of benign and malignant prostate epithelium cellular growth, migration, and cytokine abundance in vivo
    corecore