551 research outputs found

    Switching from Electron to Hole Transport in Solution-Processed Organic Blend Field-Effect Transistors

    Get PDF
    Organic electronics became an attractive alternative for practical applications in complementary logic circuits due to the unique features of organic semiconductors such as solution processability and ease of large-area manufacturing. Bulk heterojunctions (BHJ), consisting of a blend of two organic semiconductors of different electronic affinities, allow fabrication of a broad range of devices such as light-emitting transistors, light-emitting diodes, photovoltaics, photodetectors, ambipolar transistors and sensors. In this work, the charge carrier transport of BHJ films in field-effect transistors is switched from electron to hole domination upon processing and post-treatment. Low molecular weight n-type N,N′-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI8-CN2) was blended with p-type poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14) and deposited by spin-coating to form BHJ films. Systematic investigation of the role of rotation speed, solution temperature, and thermal annealing on thin film morphology was performed using atomic force microscopy, scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. It has been determined that upon thermal annealing the BHJ morphology is modified from small interconnected PDI8-CN2 crystals uniformly distributed in the polymer fraction to large planar PDI8-CN2 crystal domains on top of the blend film, leading to the switch from electron to hole transport in field-effect transistors

    Theory of biopolymer stretching at high forces

    Full text link
    We provide a unified theory for the high force elasticity of biopolymers solely in terms of the persistence length, Οp\xi_p, and the monomer spacing, aa. When the force f>\fh \sim k_BT\xi_p/a^2 the biopolymers behave as Freely Jointed Chains (FJCs) while in the range \fl \sim k_BT/\xi_p < f < \fh the Worm-like Chain (WLC) is a better model. We show that Οp\xi_p can be estimated from the force extension curve (FEC) at the extension x≈1/2x\approx 1/2 (normalized by the contour length of the biopolymer). After validating the theory using simulations, we provide a quantitative analysis of the FECs for a diverse set of biopolymers (dsDNA, ssRNA, ssDNA, polysaccharides, and unstructured PEVK domain of titin) for x≄1/2x \ge 1/2. The success of a specific polymer model (FJC or WLC) to describe the FEC of a given biopolymer is naturally explained by the theory. Only by probing the response of biopolymers over a wide range of forces can the ff-dependent elasticity be fully described.Comment: 20 pages, 4 figure

    Polarization-Sensitive Photodetectors Based on Directionally Oriented Organic Bulk-Heterojunctions

    Get PDF
    Polarized spectroscopic photodetection enables numerous applications in diverse areas such as sensing, industrial quality control, and visible light communications. Although organic photodetectors (OPDs) can offer a cost-effective alternative to silicon-based technology—particularly when flexibility and large-area arrays are desired—polarized OPDs are only beginning to receive due research interest. Instead of resorting to external polarization optics, this report presents polarized OPDs based on directionally oriented blends of poly(3-hexylthiophene) (P3HT) and benchmark polymer or nonfullerene acceptors fabricated using a versatile solution-based method. Furthermore, a novel postprocessing scheme based on backfilling and plasma etching is advanced to ameliorate high dark-currents that are otherwise inherent to fibrillar active layers. The resulting polarized P3HT:N2200 OPDs exhibit a broad enhancement across all principal figures of merit compared to reference isotropic devices, including peak responsivities of 70 mA W−1^{-1} and up to a threefold increase in 3 dB bandwidth to 0.75 MHz under parallel-polarized illumination. Polarization ratios of up to 3.5 are obtained across a spectral range that is determined by the specific donor–acceptor combinations. Finally, as a proof-of-concept demonstration, polarized OPDs are used for photoelasticity analysis of rubber films under tensile deformation, highlighting their potential for existing and emerging applications in advanced optical sensing
    • 

    corecore