1,322 research outputs found
Polyunsaturated fatty acid-derived lipid mediators and T cell function
Copyright © 2014 Nicolaou, Mauro, Urquhart and Marelli-Berg . This is an open-
access article distributed under the terms of the
Creative Commons Attribution License
(CC BY)
. The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms
Polyunsaturated fatty acid-derived lipid mediators and T cell function
Copyright © 2014 Nicolaou, Mauro, Urquhart and Marelli-Berg . This is an open-
access article distributed under the terms of the
Creative Commons Attribution License
(CC BY)
. The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms
New VLT observations of the Fermi pulsar PSR J1048-5832
PSR J1048-5832 is a Vela-like (P=123.6 ms; tau~20.3 kyr) gamma-ray pulsar
detected by Fermi, at a distance of ~2.7 kpc and with a rotational energy loss
rate dot{E}_{SD} ~2 x 10^{36} erg/s. The PSR J1048-5832 field has been observed
with the VLT in the V and R bands. We used these data to determine the colour
of the object detected closest to the Chandra position (Star D) and confirm
that it is not associated with the pulsar. For the estimated extinction along
the line of sight, inferred from a re-analysis of the Chandra and XMM-Newton
spectra, the fluxes of Star D (V~26.7; R~25.8) imply a -0.13 < (V-R)_0 < 0.6.
This means that the PSR J1048-5832 spectrum would be unusually red compared to
the Vela pulsar.Moreover, the ratio between the unabsorbed optical and X-ray
flux of PSR J1048-5832 would be much higher than for other young pulsars. Thus,
we conclude that Star D is not the PSR J1048-5832 counterpart. We compared the
derived R and V-band upper limits (R>26.4; V>27.6) with the extrapolation of
the X and gamma-ray spectra and constrained the pulsar spectrum at
low-energies. In particular, the VLT upper limits suggest that the pulsar
spectrum could be consistent with a single power-law, stretching from the
gamma-rays to the optical.Comment: 5 pages, 2 figures, accepted for publication on Monthly Notices of
the Royal Astronomical Society Main Journa
Classification and Ranking of Fermi LAT Gamma-ray Sources from the 3FGL Catalog using Machine Learning Techniques
We apply a number of statistical and machine learning techniques to classify
and rank gamma-ray sources from the Third Fermi Large Area Telescope (LAT)
Source Catalog (3FGL), according to their likelihood of falling into the two
major classes of gamma-ray emitters: pulsars (PSR) or Active Galactic Nuclei
(AGN). Using 1904 3FGL sources that have been identified/associated with AGN
(1738) and PSR (166), we train (using 70% of our sample) and test (using 30%)
our algorithms and find that the best overall accuracy (>96%) is obtained with
the Random Forest (RF) technique, while using a logistic regression (LR)
algorithm results in only marginally lower accuracy. We apply the same
techniques on a sub-sample of 142 known gamma-ray pulsars to classify them into
two major subcategories: young (YNG) and millisecond pulsars (MSP). Once more,
the RF algorithm has the best overall accuracy (~90%), while a boosted LR
analysis comes a close second. We apply our two best models (RF and LR) to the
entire 3FGL catalog, providing predictions on the likely nature of {\it
unassociated} sources, including the likely type of pulsar (YNG or MSP). We
also use our predictions to shed light on the possible nature of some gamma-ray
sources with known associations (e.g. binaries, SNR/PWN). Finally, we provide a
list of plausible X-ray counterparts for some pulsar candidates, obtained using
Swift, Chandra, and XMM. The results of our study will be of interest for both
in-depth follow-up searches (e.g. pulsar) at various wavelengths, as well as
for broader population studies.Comment: Accepted by Ap
X-ray pulsations from the radio-quiet gamma-ray pulsar in CTA 1
Prompted by the Fermi LAT discovery of a radio-quiet gamma-ray pulsar inside
the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to
assess the timing behavior of this pulsar. Exploiting both the unprecedented
photon harvest and the contemporary Fermi LAT timing measurements, a 4.7 sigma
single peak pulsation is detected, making PSR J0007+7303 the second example,
after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in
X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the
light curve is dominated by a power-law, non-thermal spectrum, while the X-ray
peak emission appears to be mainly of thermal origin, probably from a polar cap
heated by magnetospheric return currents, pointing to a hot spot varying
throughout the pulsar rotation.Comment: 19 pages, 4 figures. Accepted for publication in ApJ Letter
Radio-quiet and radio-loud pulsars: similar in Gamma-rays but different in X-rays
We present new Chandra and XMM-Newton observations of a sample of eight
radio-quiet Gamma-ray pulsars detected by the Fermi Large Area Telescope. For
all eight pulsars we identify the X-ray counterpart, based on the X-ray source
localization and the best position obtained from Gamma-ray pulsar timing. For
PSR J2030+4415 we found evidence for an about 10 arcsec-long pulsar wind
nebula. Our new results consolidate the work from Marelli et al. 2011 and
confirm that, on average, the Gamma-ray--to--X-ray flux ratios (Fgamma/Fx) of
radio-quiet pulsars are higher than for the radio-loud ones. Furthermore, while
the Fgamma/Fx distribution features a single peak for the radio-quiet pulsars,
the distribution is more dispersed for the radio-loud ones, possibly showing
two peaks. We discuss possible implications of these different distributions
based on current models for pulsar X-ray emission.Comment: Accepted for publication in The Astrophysical Journal; 12 pages, 3
figures, 2 table
Observations of one young and three middle-aged -ray pulsars with the Gran Telescopio Canarias
We used the 10.4m Gran Telescopio Canarias to search for the optical
counterparts to four isolated -ray pulsars, all detected in the X-rays
by either \xmm\ or \chan\ but not yet in the optical. Three of them are
middle-aged pulsars -- PSR\, J1846+0919 (0.36 Myr), PSR\, J2055+2539 (1.2 Myr),
PSR\, J2043+2740 (1.2 Myr) -- and one, PSR\, J1907+0602, is a young pulsar
(19.5 kyr). For both PSR\, J1907+0602 and PSR\, J2055+2539 we found one object
close to the pulsar position. However, in both cases such an object cannot be a
viable candidate counterpart to the pulsar. For PSR\, J1907+0602, because it
would imply an anomalously red spectrum for the pulsar and for PSR\, J2055+2539
because the pulsar would be unrealistically bright () for the
assumed distance and interstellar extinction. For PSR\, J1846+0919, we found no
object sufficiently close to the expected position to claim a possible
association, whereas for PSR\, J2043+2740 we confirm our previous findings that
the object nearest to the pulsar position is an unrelated field star. We used
our brightness limits (), the first obtained with a
large-aperture telescope for both PSR\, J1846+0919 and PSR\, J2055+2539, to
constrain the optical emission properties of these pulsars and investigate the
presence of spectral turnovers at low energies in their multi-wavelength
spectra.Comment: 10 pages, 11 figures, accpted for publication in MNRA
- …