340 research outputs found

    Covalent Binding Antibodies Suppress Advanced Glycation: On the Innate Tier of Adaptive Immunity

    Get PDF
    Non-enzymatic protein glycation is a source of metabolic stress that contributes to cytotoxicity and tissue damage. Hyperglycemia has been linked to elevation of advanced glycation endproducts, which mediate much of the vascular pathology leading to diabetic complications. Enhanced glycation of immunoglobulins and their accelerated vascular clearance is proposed as a natural mechanism to intercept alternative advanced glycation endproducts, thereby mitigating microvascular disease. We reported that antibodies against the glycoprotein KLH have elevated reactivity for glycopeptides from diabetic serum. These reactions are mediated by covalent binding between antibody light chains and carbonyl groups of glycated peptides. Diabetic animals that were immunized to induce reactive antibodies had attenuated diabetic nephropathy, which correlated with reduced levels of circulating and kidney-bound glycation products. Molecular analysis of antibody glycation revealed the preferential modification of light chains bearing germline-encoded lambda V regions. We previously noted that antibody fragments carrying V regions in the germline configuration are selected from a human Fv library by covalent binding to a reactive organophosphorus ester. These Fv fragments were specifically modified at light chain V region residues, which map to the combining site at the interface between light and heavy chains. These findings suggest that covalent binding is an innate property of antibodies, which may be encoded in the genome for specific physiological purposes. This hypothesis is discussed in context with current knowledge of the natural antibodies that recognize altered self molecules and the catalytic autoantibodies found in autoimmune disease

    LGALS3 (lectin, galactoside-binding, soluble, 3)

    Get PDF
    Review on LGALS3 (lectin, galactoside-binding, soluble, 3), with data on DNA, on the protein encoded, and where the gene is implicated

    Activation of Human T-Helper/Inducer Cell, T-Cytotoxic Cell, B-Cell, and Natural Killer (NK)-Cells and induction of Natural Killer Cell Activity against K562 Chronic Myeloid Leukemia Cells with Modified Citrus Pectin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modified citrus pectin (MCP) is known for its anti-cancer effects and its ability to be absorbed and circulated in the human body. In this report we tested the ability of MCP to induce the activation of human blood lymphocyte subsets like T, B and NK-cells.</p> <p>Methods</p> <p>MCP treated human blood samples were incubated with specific antibody combinations and analyzed in a flow cytometer using a 3-color protocol. To test functionality of the activated NK-cells, isolated normal lymphocytes were treated with increasing concentrations of MCP. Log-phase PKH26-labeled K562 leukemic cells were added to the lymphocytes and incubated for 4 h. The mixture was stained with FITC-labeled active form of caspase 3 antibody and analyzed by a 2-color flow cytometry protocol. The percentage of K562 cells positive for PKH26 and FITC were calculated as the dead cells induced by NK-cells. Monosaccharide analysis of the MCP was performed by high-performance anion-exchange chromatography with pulse amperometric detection (HPAEC-PAD).</p> <p>Results</p> <p>MCP activated T-cytotoxic cells and B-cell in a dose-dependent manner, and induced significant dose-dependent activation of NK-cells. MCP-activated NK-cells demonstrated functionality in inducing cancer cell death. MCP consisted of oligogalacturonic acids with some containing 4,5-unsaturated non-reducing ends.</p> <p>Conclusions</p> <p>MCP has immunostimulatory properties in human blood samples, including the activation of functional NK cells against K562 leukemic cells in culture. Unsaturated oligogalacturonic acids appear to be the immunostimulatory carbohydrates in MCP.</p

    Prognostic significance of endogenous adhesion/growth-regulatory lectins in lung cancer

    Get PDF
    Objective: To determine the expression of endogenous adhesion/growth-regulatory lectins and their binding sites using labeled tissue lectins as well as the binding profile of hyaluronic acid as an approach to define new prognostic markers. Methods: Sections of paraffin-embedded histological material of 481 lungs from lung tumor patients following radical lung excision processed by a routine immunohistochemical method (avidin-biotin labeling, DAB chromogen). Specific antibodies against galectins-1 and - 3 and the heparin-binding lectin were tested. Staining by labeled galectins and hyaluronic acid was similarly visualized by a routine protocol. After semiquantitative assessment of staining, the results were compared with the pT and pN stages and the histological type. Survival was calculated by univariate and multivariate methods. Results: Binding of galectin-1 and its expression tended to increase, whereas the parameters for galectin-3 decreased in advanced pT and pN stages at a statistically significant level. The number of positive cases was considerably smaller among the cases with small cell lung cancer than in the group with non-small-cell lung cancer, among which adenocarcinomas figured prominently with the exception of galectin-1 expression. Kaplan-Meier computations revealed that the survival rate of patients with galectin-3-binding or galectin-1-expressing tumors was significantly poorer than that of the negative cases. In the multivariate calculations of survival lymph node metastases ( p < 0.0001), histological type ( p = 0.003), galectin-3-binding capacity ( p = 0.01), galectin-3 expression ( p = 0.03) and pT status ( p = 0.003) proved to be independent prognostic factors, not correlated with the pN stage. Conclusion: The expression and the capacity to bind the adhesion/growth regulatory galectin-3 is defined as an unfavorable prognostic factor not correlated with the pTN stage. Copyright (C) 2005 S. Karger AG, Basel

    Bile acid: a potential inducer of colon cancer stem cells

    Get PDF
    Background: Although the unconjugated secondary bile acids, specifically deoxycholic acid (DCA) and lithocholic acid (LCA), are considered to be risk factors for colorectal cancer, the precise mechanism(s) by which they regulate carcinogenesis is poorly understood. We hypothesize that the cytotoxic bile acids may promote stemness in colonic epithelial cells leading to generation of cancer stem cells (CSCs) that play a role in the development and progression of colon cancer. Methods: Normal human colonic epithelial cells (HCoEpiC) were used to study bile acid DCA/LCA-mediated induction of CSCs. The expression of CSC markers was measured by real-time qPCR. Flow cytometry was used to isolate CSCs. T-cell factor/lymphoid-enhancing factor (TCF/LEF) luciferase assay was employed to examine the transcriptional activity of β-catenin. Downregulation of muscarinic 3 receptor (M3R) was achieved through transfection of corresponding siRNA. Results: We found DCA/LCA to induce CSCs in normal human colonic epithelial cells, as evidenced by the increased proportion of CSCs, elevated levels of several CSC markers, as well as a number of epithelial– mesenchymal transition markers together with increased colonosphere formation, drug exclusion, ABCB1 and ABCG2 expression, and induction of M3R, p-EGFR, matrix metallopeptidases, and c-Myc. Inhibition of M3R signaling greatly suppressed DCA/LCA induction of the CSC marker ALDHA1 and also c-Myc mRNA expression as well as transcriptional activation of TCF/LEF. Conclusions: Our results suggest that bile acids, specifically DCA and LCA, induce cancer stemness in colonic epithelial cells by modulating M3R and Wnt/β-catenin signaling and thus could be considered promoters of colon cancer

    The Effect of Chloroquine, Hydroxychloroquine and Azithromycin on the Corrected QT Interval in Patients with SARS-CoV-2 Infection

    Get PDF
    Background - The novel SARs-CoV-2 coronavirus is responsible for the global COVID-19 pandemic. Small studies have shown a potential benefit of chloroquine/hydroxychloroquine ± azithromycin for the treatment of COVID-19. Use of these medications alone, or in combination, can lead to a prolongation of the QT interval, possibly increasing the risk of Torsade de pointes (TdP) and sudden cardiac death. Methods - Hospitalized patients treated with chloroquine/hydroxychloroquine ± azithromycin from March 1st through the 23rd at three hospitals within the Northwell Health system were included in this prospective, observational study. Serial assessments of the QT interval were performed. The primary outcome was QT prolongation resulting in TdP. Secondary outcomes included QT prolongation, the need to prematurely discontinue any of the medications due to QT prolongation and arrhythmogenic death. Results - Two hundred one patients were treated for COVID-19 with chloroquine/hydroxychloroquine. Ten patients (5.0%) received chloroquine, 191 (95.0%) received hydroxychloroquine and 119 (59.2%) also received azithromycin. The primary outcome of TdP was not observed in the entire population. Baseline QTc intervals did not differ between patients treated with chloroquine/hydroxychloroquine (monotherapy group) vs. those treated with combination group (chloroquine/hydroxychloroquine and azithromycin) (440.6 ± 24.9 ms vs. 439.9 ± 24.7 ms, p =0.834). The maximum QTc during treatment was significantly longer in the combination group vs the monotherapy group (470.4 ± 45.0 ms vs. 453.3 ± 37.0 ms, p = 0.004). Seven patients (3.5%) required discontinuation of these medications due to QTc prolongation. No arrhythmogenic deaths were reported. Conclusions - In the largest reported cohort of COVID-19 patients to date treated with chloroquine/hydroxychloroquine {plus minus} azithromycin, no instances of TdP or arrhythmogenic death were reported. Although use of these medications resulted in QT prolongation, clinicians seldomly needed to discontinue therapy. Further study of the need for QT interval monitoring is needed before final recommendations can be made

    Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment

    Get PDF
    Prostate cancer will develop chemoresistance following a period of chemotherapy. This is due, in part, to the acquisition of antiapoptotic properties by the cancer cells and, therefore, development of novel strategies for treatment is of critical need. Here, we attempt to clarify the role of the antiapoptotic molecule galectin-3 in prostate cancer cells using siRNA and antagonist approaches. The data showed that Gal-3 inhibition by siRNA or its antagonist GCS-100/modified citrus pectin (MCP) increased cisplatin-induced apoptosis of PC3 cells. Recent studies have indicated that cisplatin-induced apoptosis may be mediated by calpain, a calcium-dependent protease, as its activation leads to cleavage of androgen receptor into an androgen-independent isoform in prostate cancer cells. Thus, we examined whether calpain activation is associated with the Gal-3 function of regulating apoptosis. Here, we report that Gal-3 inhibition by siRNA or GCS-100/MCP enhances calpain activation, whereas Gal-3 overexpression inhibits it. Inhibition of calpain using its inhibitor and/or siRNA attenuated the proapoptotic effect of Gal-3 inhibition, suggesting that calpain activation may be a novel mechanism for the proapoptotic effect of Gal-3 inhibition. Thus, a paradigm shift for treating prostate cancer is suggested whereby a combination of a non-toxic anti-Gal-3 drug together with a toxic chemotherapeutic agent could serve as a novel therapeutic modality for chemoresistant prostate cancers

    Endogenous Galectin-9 Suppresses Apoptosis in Human Rheumatoid Arthritis Synovial Fibroblasts

    Get PDF
    Galectin-9 (Gal9) has been postulated to have anti-infammatory properties based on the ability of exogenous Gal9 to induce apoptosis in synovial fbroblasts in animal models of rheumatoid arthritis (RA). Here we aimed to assess the potential role of endogenous Galectins, including Gal9, in the infammatory pathology of the RA synovium in humans. Firstly expression of Galectins 1–9 was determined in synovial fbroblasts (RASF) and dermal fbroblasts (DF) isolated from RA patients, the latter representing a non-infamed site. We then further challenged the cells with pro-infammatory TLR agonists and cytokines and assessed Galectin expression. Gal9 was found to be diferentially and abundantly expressed in RASF compared to DF. Agonists of TLR3 and TLR4, along with IFNgamma were also found to induce Gal9 expression in RASF. siRNA was then used to knock-down Gal9 expression in RASF and the efects of this on apoptosis and cell viability were assessed. Increased apoptosis was observed in RASF following Gal9 knock-down. We conclude that, unlike exogenous Gal9, endogenous Gal9 is protective against apoptosis and enhances synovial fbroblast viability suggesting that its role in RA is both pathogenic and pro-infammatory
    corecore