7,902 research outputs found
Particle acceleration in the presence of weak turbulence at an X-type neutral point
We simulate the likely noisy situation near a reconnection region by superposing many 2D linear reconnection eigenmodes. The superposition of modes on the steady state X-type magnetic field creates multiple X- and O-type neutral points close to the original neutral point and so increases the size of the non-adiabatic region. We study test particle trajectories of initially thermal protons in these fields. Protons become trapped in this region and are accelerated by the turbulent electric field to energies up to 1 MeV in time scales relevant to solar flares. Higher energies are achieved due to the interaction of particles with increasingly turbulent electric and magnetic fields
The chiral symplectic universality class
We report a numerical investigation of localization in the SU(2) model
without diagonal disorder. At the band center, chiral symmetry plays an
important role. Our results indicate that states at the band center are
critical. States away from the band center but not too close to the edge of the
spectrum are metallic as expected for Hamiltonians with symplectic symmetry.Comment: accepted in Proceedings of Localisation 2002 Conference, Tokyo, Japan
(to be published as supplement of J. Phys. Soc. Japan
Comment on the paper I. M. Suslov: Finite Size Scaling from the Self Consistent Theory of Localization
In the recent paper [I.M.Suslov, JETP {\bf 114} (2012) 107] a new scaling
theory of electron localization was proposed. We show that numerical data for
the quasi-one dimensional Anderson model do not support predictions of this
theory.Comment: Comment on the paper arXiv 1104.043
Acoustic evaluation of a novel swept-rotor fan
Inlet noise and aerodynamic performance are presented for a high tip speed fan designed with rotor blade leading edge sweep that gives a subsonic component of inlet Mach number normal to the edge at all radii. The intent of the design was to minimize the generation of rotor leading edge shock waves thereby minimizing multiple pure tone noise. Sound power level and spectral comparisons are made with several high-speed fans of conventional design. Results show multiple pure tone noise at levels below those of some of the other fans and this noise was initiated at a higher tip speed. Aerodynamic performance of the fan did not meet design goals for this first build which applied conventional design procedures to the swept fan geometry
Fan noise reduction achieved by removing tip flow irregularities behind the rotor - forward arc test configurations
The noise source caused by the interaction of the rotor tip flow irregularities (vortices and velocity defects) with the downstream stator vanes was studied. Fan flow was removed behind a 0.508 meter (20 in.) diameter model turbofan through an outer wall slot between the rotor and stator. Noise measurements were made with far-field microphones positioned in an arc about the fan inlet and with a pressure transducer in the duct behind the stator. Little tone noise reduction was observed in the forward arc during flow removal; possibly because the rotor-stator interaction noise did not propagate upstream through the rotor. Noise reductions were maded in the duct behind the stator and the largest decrease occurred with the first increment of flow removal. This result indicates that the rotor tip flow irregularity-stator interaction is as important a noise producing mechanism as the normally considered rotor wake-stator interaction
- …
