1,015 research outputs found

    Behavior of a Model Dynamical System with Applications to Weak Turbulence

    Get PDF
    We experimentally explore solutions to a model Hamiltonian dynamical system derived in Colliander et al., 2012, to study frequency cascades in the cubic defocusing nonlinear Schr\"odinger equation on the torus. Our results include a statistical analysis of the evolution of data with localized amplitudes and random phases, which supports the conjecture that energy cascades are a generic phenomenon. We also identify stationary solutions, periodic solutions in an associated problem and find experimental evidence of hyperbolic behavior. Many of our results rely upon reframing the dynamical system using a hydrodynamic formulation.Comment: 22 pages, 14 figure

    Weierstrass's criterion and compact solitary waves

    Get PDF
    Weierstrass's theory is a standard qualitative tool for single degree of freedom equations, used in classical mechanics and in many textbooks. In this Brief Report we show how a simple generalization of this tool makes it possible to identify some differential equations for which compact and even semicompact traveling solitary waves exist. In the framework of continuum mechanics, these differential equations correspond to bulk shear waves for a special class of constitutive laws.Comment: 4 page

    Solitary Waves and Compactons in a class of Generalized Korteweg-DeVries Equations

    Full text link
    We study the class of generalized Korteweg-DeVries equations derivable from the Lagrangian: L(l,p) = \int \left( \frac{1}{2} \vp_{x} \vp_{t} - { {(\vp_{x})^{l}} \over {l(l-1)}} + \alpha(\vp_{x})^{p} (\vp_{xx})^{2} \right) dx, where the usual fields u(x,t)u(x,t) of the generalized KdV equation are defined by u(x,t) = \vp_{x}(x,t). This class contains compactons, which are solitary waves with compact support, and when l=p+2l=p+2, these solutions have the feature that their width is independent of the amplitude. We consider the Hamiltonian structure and integrability properties of this class of KdV equations. We show that many of the properties of the solitary waves and compactons are easily obtained using a variational method based on the principle of least action. Using a class of trial variational functions of the form u(x,t)=A(t)exp[β(t)xq(t)2n]u(x,t) = A(t) \exp \left[-\beta (t) \left|x-q(t) \right|^{2n} \right] we find soliton-like solutions for all nn, moving with fixed shape and constant velocity, cc. We show that the velocity, mass, and energy of the variational travelling wave solutions are related by c=2rEM1 c = 2 r E M^{-1}, where r=(p+l+2)/(p+6l) r = (p+l+2)/(p+6-l), independent of nn.\newline \newline PACS numbers: 03.40.Kf, 47.20.Ky, Nb, 52.35.SbComment: 16 pages. LaTeX. Figures available upon request (Postscript or hard copy

    A Continuum Description of Rarefied Gas Dynamics (I)--- Derivation From Kinetic Theory

    Full text link
    We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulae at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process-dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.Comment: 16 page

    Singularites in the Bousseneq equation and in the generalized KdV equation

    Full text link
    In this paper, two kinds of the exact singular solutions are obtained by the improved homogeneous balance (HB) method and a nonlinear transformation. The two exact solutions show that special singular wave patterns exists in the classical model of some nonlinear wave problems

    Deformation of Curved BPS Domain Walls and Supersymmetric Flows on 2d K\"ahler-Ricci Soliton

    Full text link
    We consider some aspects of the curved BPS domain walls and their supersymmetric Lorentz invariant vacua of the four dimensional N=1 supergravity coupled to a chiral multiplet. In particular, the scalar manifold can be viewed as a two dimensional K\"ahler-Ricci soliton generating a one-parameter family of K\"ahler manifolds evolved with respect to a real parameter, τ\tau. This implies that all quantities describing the walls and their vacua indeed evolve with respect to τ\tau. Then, the analysis on the eigenvalues of the first order expansion of BPS equations shows that in general the vacua related to the field theory on a curved background do not always exist. In order to verify their existence in the ultraviolet or infrared regions one has to perform the renormalization group analysis. Finally, we discuss in detail a simple model with a linear superpotential and the K\"ahler-Ricci soliton considered as the Rosenau solution.Comment: 19 pages, no figures. Typos corrected. Published versio

    Syrian Refugees and the Digital Passage to Europe: Smartphone Infrastructures and Affordances

    Get PDF
    This research examines the role of smartphones in refugees’ journeys. It traces the risks and possibilities afforded by smartphones for facilitating information, communication, and migration flows in the digital passage to Europe. For the Syrian and Iraqi refugee respondents in this France-based qualitative study, smartphones are lifelines, as important as water and food. They afford the planning, navigation, and documentation of journeys, enabling regular contact with family, friends, smugglers, and those who help them. However, refugees are simultaneously exposed to new forms of exploitation and surveillance with smartphones as migrations are financialised by smugglers and criminalized by European policies, and the digital passage is dependent on a contingent range of sociotechnical and material assemblages. Through an infrastructural lens, we capture the dialectical dynamics of opportunity and vulnerability, and the forms of resilience and solidarity, that arise as forced migration and digital connectivity coincide

    Origin of Multikinks in Dispersive Nonlinear Systems

    Full text link
    We develop {\em the first analytical theory of multikinks} for strongly {\em dispersive nonlinear systems}, considering the examples of the weakly discrete sine-Gordon model and the generalized Frenkel-Kontorova model with a piecewise parabolic potential. We reveal that there are no 2π2\pi-kinks for this model, but there exist {\em discrete sets} of 2πN2\pi N-kinks for all N>1. We also show their bifurcation structure in driven damped systems.Comment: 4 pages 5 figures. To appear in Phys Rev

    Symmetries of a class of nonlinear fourth order partial differential equations

    Full text link
    In this paper we study symmetry reductions of a class of nonlinear fourth order partial differential equations \be u_{tt} = \left(\kappa u + \gamma u^2\right)_{xx} + u u_{xxxx} +\mu u_{xxtt}+\alpha u_x u_{xxx} + \beta u_{xx}^2, \ee where α\alpha, β\beta, γ\gamma, κ\kappa and μ\mu are constants. This equation may be thought of as a fourth order analogue of a generalization of the Camassa-Holm equation, about which there has been considerable recent interest. Further equation (1) is a ``Boussinesq-type'' equation which arises as a model of vibrations of an anharmonic mass-spring chain and admits both ``compacton'' and conventional solitons. A catalogue of symmetry reductions for equation (1) is obtained using the classical Lie method and the nonclassical method due to Bluman and Cole. In particular we obtain several reductions using the nonclassical method which are no} obtainable through the classical method

    Steady State Solutions of a Mass-Conserving Bistable Equation with a Saturating Flux

    Get PDF
    We consider a mass-conserving bistable equation with a saturating flux on an interval. This is the quasilinear analogue of the Rubinstein-Steinberg equation, suitable for description of order parameter conserving solid-solid phase transitions in the case of large spatial gradients in the order parameter. We discuss stationary solutions and investigate the change in bifurcation diagrams as the mass constraint and the length of the interval are varied.Comment: 26 pages, 14 figure
    corecore