996 research outputs found

    Shining a Gluon Beam Through Quark-Gluon Plasma

    Full text link
    We compute the energy density radiated by a quark undergoing circular motion in strongly coupled N=4\mathcal N = 4 supersymmetric Yang-Mills plasma. If it were in vacuum, this quark would radiate a beam of strongly coupled radiation whose angular distribution has been characterized and is very similar to that of synchrotron radiation produced by an electron in circular motion in electrodynamics. Here, we watch this beam of gluons getting quenched by the strongly coupled plasma. We find that a beam of gluons of momenta ∼q≫πT\sim q \gg \pi T is attenuated rapidly, over a distance ∼q1/3(πT)−4/3\sim q^{1/3} (\pi T)^{-4/3} in a plasma with temperature TT. As the beam propagates through the plasma at the speed of light, it sheds trailing sound waves with momenta ≲πT\lesssim \pi T. Presumably these sound waves would thermalize in the plasma if they were not hit soon after their production by the next pulse of gluons from the lighthouse-like rotating quark. At larger and larger qq, the trailing sound wave becomes less and less prominent. The outward going beam of gluon radiation itself shows no tendency to spread in angle or to shift toward larger wavelengths, even as it is completely attenuated. In this regard, the behavior of the beam of gluons that we analyze is reminiscent of the behavior of jets produced in heavy ion collisions at the LHC that lose a significant fraction of their energy without appreciable change in their angular distribution or their momentum distribution as they plow through the strongly coupled quark-gluon plasma produced in these collisions.Comment: 16 pages, 4 figure

    Hard thermal loops and the entropy of supersymmetric Yang-Mills theories

    Get PDF
    We apply the previously proposed scheme of approximately self-consistent hard-thermal-loop resummations in the entropy of high-temperature QCD to N=4 supersymmetric Yang-Mills (SYM) theories and compare with a (uniquely determined) R[4,4] Pad\'e approximant that interpolates accurately between the known perturbative result and the next-to-leading order strong-coupling result obtained from AdS/CFT correspondence. We find good agreement up to couplings where the entropy has dropped to about 85% of the Stefan-Boltzmann value. This is precisely the regime which in purely gluonic QCD corresponds to temperatures above 2.5 times the deconfinement temperature and for which this method of hard-thermal-loop resummation has given similar good agreement with lattice QCD results. This suggests that in this regime the entropy of both QCD and N=4 SYM is dominated by effectively weakly coupled hard-thermal-loop quasiparticle degrees of freedom. In N=4 SYM, strong-coupling contributions to the thermodynamic potential take over when the entropy drops below 85% of the Stefan-Boltzmann value.Comment: 14 pages, 2 figures, JHEP3. v2: revised and expanded, with unchanged HTL results but corrected NLO strong-coupling result from AdS/CFT (which is incorrectly reproduced in almost all previous papers comparing weak and strong coupling results of N=4 SYM) and novel (unique) Pade approximant interpolating between weak and strong coupling result

    Time singularities of correlators from Dirichlet conditions in AdS/CFT

    Full text link
    Within AdS/CFT, we establish a general procedure for obtaining the leading singularity of two-point correlators involving operator insertions at different times. The procedure obtained is applied to operators dual to a scalar field which satisfies Dirichlet boundary conditions on an arbitrary time-like surface in the bulk. We determine how the Dirichlet boundary conditions influence the singularity structure of the field theory correlation functions. New singularities appear at boundary points connected by null geodesics bouncing between the Dirichlet surface and the boundary. We propose that their appearance can be interpreted as due to a non-local double trace deformation of the dual field theory, in which the two insertions of the operator are separated in time. The procedure developed in this paper provides a technical tool which may prove useful in view of describing holographic thermalization using gravitational collapse in AdS space.Comment: 30 pages, 3 figures. Version as in JHE

    Energy loss in a strongly coupled anisotropic plasma

    Full text link
    We study the energy loss of a rotating infinitely massive quark moving, at constant velocity, through an anisotropic strongly-coupled N=4 plasma from holography. It is shown that, similar to the isotropic plasma, the energy loss of the rotating quark is due to either the drag force or radiation with a continuous crossover from drag-dominated regime to the radiation dominated regime. We find that the anisotropy has a significant effect on the energy loss of the heavy quark, specially in the crossover regime. We argue that the energy loss due to radiation in anisotropic media is less than the isotropic case. Interestingly this is similar to analogous calculations for the energy loss in weakly coupled anisotropic plasma.Comment: 26+1 pages, 10 figures, typos fixe

    Measuring Black Hole Formations by Entanglement Entropy via Coarse-Graining

    Full text link
    We argue that the entanglement entropy offers us a useful coarse-grained entropy in time-dependent AdS/CFT. We show that the total von-Neumann entropy remains vanishing even when a black hole is created in a gravity dual, being consistent with the fact that its corresponding CFT is described by a time-dependent pure state. We analytically calculate the time evolution of entanglement entropy for a free Dirac fermion on a circle following a quantum quench. This is interpreted as a toy holographic dual of black hole creations and annihilations. It is manifestly free from the black hole information problem.Comment: 25 pages, Latex, 8 figure

    Heavy flavor diffusion in weakly coupled N=4 Super Yang-Mills theory

    Full text link
    We use perturbation theory to compute the diffusion coefficient of a heavy quark or scalar moving in N=4 SU(N_c) Super Yang-Mills plasma to leading order in the coupling and the ratio T/M<<1. The result is compared both to recent strong coupling calculations in the same theory and to the corresponding weak coupling result in QCD. Finally, we present a compact and simple formulation of the Lagrangian of our theory, N=4 SYM coupled to a massive fundamental N=2 hypermultiplet, which is well-suited for weak coupling expansions.Comment: 22 pages, 4 figures; v3: error corrected in calculations, figures and discussion modified accordingl

    Spinning Dragging Strings

    Full text link
    We use the AdS/CFT correspondence to compute the drag force experienced by a heavy quark moving through a maximally supersymmetric SU(N) super Yang-Mills plasma at nonzero temperature and R-charge chemical potential and at large 't Hooft coupling. We resolve a discrepancy in the literature between two earlier studies of such quarks. In addition, we consider small fluctuations of the spinning strings dual to these probe quarks and find no evidence of instabilities. We make some comments about suitable D7-brane boundary conditions for the dual strings.Comment: 25 pages, 4 figures; v2 refs added; v3 to appear in JHEP, clarifying comment

    Probing strongly coupled anisotropic plasma

    Full text link
    We calculate the static potential, the drag force and the jet quenching parameter in strongly coupled anisotropic N=4 super Yang-Mills plasma. We find that the jet quenching is in general enhanced in presence of anisotropy compared to the isotropic case and that its value depends strongly on the direction of the moving quark and the direction along which the momentum broadening occurs. The jet quenching is strongly enhanced for a quark moving along the anisotropic direction and momentum broadening happens along the transverse one. The parameter gets lower for a quark moving along the transverse direction and the momentum broadening considered along the anisotropic one. Finally, a weaker enhancement is observed when the quark moves in the transverse plane and the broadening occurs on the same plane. The drag force for quark motion parallel to the anisotropy is always enhanced. For motion in the transverse space the drag force is enhanced compared to the isotropic case only for quarks having velocity above a critical value. Below this critical value the force is decreased. Moreover, the drag force along the anisotropic direction is always stronger than the force in the transverse space. The diffusion time follows exactly the inverse relations of the drag forces. The static potential is decreased and stronger decrease observed for quark-antiquark pair aligned along the anisotropic direction than the transverse one. We finally comment on our results and elaborate on their similarities and differences with the weakly coupled plasmas.Comment: 1+44 pages, 18 Figures; Added results on static force; Added references; version published in JHE

    QTL and systems genetics analysis of mouse grooming and behavioral responses to novelty in an open field

    Get PDF
    International audienceThe open field is a classic test used to assess exploratory behavior, anxiety, and locomotor activity in rodents. Here we mapped quantitative trait loci (QTLs) underlying behaviors displayed in an open field, using a panel of 53 BXD recombinant inbred mouse strains with deep replication (10 per strain and sex). The use of these strains permits the integration and comparison of data obtained in different laboratories, and also offers the possibility to study trait covariance by exploiting powerful bioinformatics tools and resources. We quantified behavioral traits during 20 min test sessions including (1) percent time spent and distance travelled near the wall (thigmotaxis), (2) leaning against the wall, (3) rearing, (4) jumping, (5) grooming duration, (6) grooming frequency, (7) locomotion, and (8) defecation. All traits exhibit moderate heritability making them amenable to genetic analysis. We identified a significant QTL on chromosome M.m. 4 at ~104 Mb that modulates grooming duration in both males and females (LRS values of ~18, explaining 25% and 14% of the variance, respectively) and a suggestive QTL modulating locomotion that maps to the same locus. Bioinformatic analysis indicates Disabled 1 (Dab1, a key protein in the reelin signaling pathway) as a particularly strong candidate gene modulating these behaviors. We also found two highly suggestive QTLs for a sex by strain interaction for grooming duration on chromosomes 13 and 17. In addition, we identified a pairwise epistatic interaction between loci on chromosomes 12 at 36-37 Mb and 14 at 34-36 Mb that influences rearing frequency in males
    • …
    corecore