144 research outputs found

    MiniBooNE and a (CP)^2 = -1 sterile neutrino

    Full text link
    It has been taken as granted that the observation of two independent mass-squared differences necessarily fixes the number of underlying mass eigenstates as three, and that the addition of a sterile neutrino provides an additional mass-squared difference. The purpose of this Letter is to argue that if one considers a sterile neutrino component that belongs to the (CP)^2 = - 1 sector, then both of the stated claims are false. We also outline how the results reported here, when combined with the forthcoming MiniBooNE data and other experiments, can help settle the issue of the CP properties of the sterile neutrino; if such a component does indeed exist.Comment: Mod. Phys. Lett. A (in press, 8 pages

    Decoherence of spin echoes

    Full text link
    We define a quantity, the so-called purity fidelity, which measures the rate of dynamical irreversibility due to decoherence, observed e.g in echo experiments, in the presence of an arbitrary small perturbation of the total (system + environment) Hamiltonian. We derive a linear response formula for the purity fidelity in terms of integrated time correlation functions of the perturbation. Our relation predicts, similarly to the case of fidelity decay, faster decay of purity fidelity the slower decay of time correlations is. In particular, we find exponential decay in quantum mixing regime and faster, initially quadratic and later typically gaussian decay in the regime of non-ergodic, e.g. integrable quantum dynamics. We illustrate our approach by an analytical calculation and numerical experiments in the Ising spin 1/2 chain kicked with tilted homogeneous magnetic field where part of the chain is interpreted as a system under observation and part as an environment.Comment: 22 pages, 10 figure

    Dark matter: A spin one half fermion field with mass dimension one?

    Full text link
    We report an unexpected theoretical discovery of a spin one half matter field with mass dimension one. It is based on a complete set of eigenspinors of the charge conjugation operator. Due to its unusual properties with respect to charge conjugation and parity it belongs to a non standard Wigner class. Consequently, the theory exhibits non-locality with (CPT)^2 = - I. Its dominant interaction with known forms of matter is via Higgs, and with gravity. This aspect leads us to contemplate it as a first-principle candidate for dark matter.Comment: 5 pages, RevTex, v2: slightly extended discussion, new refs. and note adde

    The Stabilized Poincare-Heisenberg algebra: a Clifford algebra viewpoint

    Get PDF
    The stabilized Poincare-Heisenberg algebra (SPHA) is the Lie algebra of quantum relativistic kinematics generated by fifteen generators. It is obtained from imposing stability conditions after attempting to combine the Lie algebras of quantum mechanics and relativity which by themselves are stable, however not when combined. In this paper we show how the sixteen dimensional Clifford algebra CL(1,3) can be used to generate the SPHA. The Clifford algebra path to the SPHA avoids the traditional stability considerations, relying instead on the fact that CL(1,3) is a semi-simple algebra and therefore stable. It is therefore conceptually easier and more straightforward to work with a Clifford algebra. The Clifford algebra path suggests the next evolutionary step toward a theory of physics at the interface of GR and QM might be to depart from working in space-time and instead to work in space-time-momentum.Comment: 14 page

    Isotopic liftings of Clifford algebras and applications in elementary particle mass matrices

    Full text link
    Isotopic liftings of algebraic structures are investigated in the context of Clifford algebras, where it is defined a new product involving an arbitrary, but fixed, element of the Clifford algebra. This element acts as the unit with respect to the introduced product, and is called isounit. We construct isotopies in both associative and non-associative arbitrary algebras, and examples of these constructions are exhibited using Clifford algebras, which although associative, can generate the octonionic, non-associative, algebra. The whole formalism is developed in a Clifford algebraic arena, giving also the necessary pre-requisites to introduce isotopies of the exterior algebra. The flavor hadronic symmetry of the six u,d,s,c,b,t quarks is shown to be exact, when the generators of the isotopic Lie algebra su(6) are constructed, and the unit of the isotopic Clifford algebra is shown to be a function of the six quark masses. The limits constraining the parameters, that are entries of the representation of the isounit in the isotopic group SU(6), are based on the most recent limits imposed on quark masses.Comment: 19 page

    Revisiting Clifford algebras and spinors III: conformal structures and twistors in the paravector model of spacetime

    Full text link
    This paper is the third of a series of three, and it is the continuation of math-ph/0412074 and math-ph/0412075. After reviewing the conformal spacetime structure, conformal maps are described in Minkowski spacetime as the twisted adjoint representation of the group Spin_+(2,4), acting on paravectors. Twistors are then presented via the paravector model of Clifford algebras and related to conformal maps in the Clifford algebra over the lorentzian R{4,1}$ spacetime. We construct twistors in Minkowski spacetime as algebraic spinors associated with the Dirac-Clifford algebra Cl(1,3)(C) using one lower spacetime dimension than standard Clifford algebra formulations, since for this purpose the Clifford algebra over R{4,1} is also used to describe conformal maps, instead of R{2,4}. Although some papers have already described twistors using the algebra Cl(1,3)(C), isomorphic to Cl(4,1), the present formulation sheds some new light on the use of the paravector model and generalizations.Comment: 17 page

    Geometric Algebra Model of Distributed Representations

    Full text link
    Formalism based on GA is an alternative to distributed representation models developed so far --- Smolensky's tensor product, Holographic Reduced Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced by geometric products, interpretable in terms of geometry which seems to be the most natural language for visualization of higher concepts. This paper recalls the main ideas behind the GA model and investigates recognition test results using both inner product and a clipped version of matrix representation. The influence of accidental blade equality on recognition is also studied. Finally, the efficiency of the GA model is compared to that of previously developed models.Comment: 30 pages, 19 figure

    Matrix exponential via Clifford algebras

    Full text link
    We use isomorphism φ\varphi between matrix algebras and simple orthogonal Clifford algebras \cl(Q) to compute matrix exponential eA{e}^{A} of a real, complex, and quaternionic matrix A. The isomorphic image p=φ(A)p=\varphi(A) in \cl(Q), where the quadratic form QQ has a suitable signature (p,q),(p,q), is exponentiated modulo a minimal polynomial of pp using Clifford exponential. Elements of \cl(Q) are treated as symbolic multivariate polynomials in Grassmann monomials. Computations in \cl(Q) are performed with a Maple package `CLIFFORD'. Three examples of matrix exponentiation are given

    On the Decomposition of Clifford Algebras of Arbitrary Bilinear Form

    Full text link
    Clifford algebras are naturally associated with quadratic forms. These algebras are Z_2-graded by construction. However, only a Z_n-gradation induced by a choice of a basis, or even better, by a Chevalley vector space isomorphism Cl(V) \bigwedge V and an ordering, guarantees a multi-vector decomposition into scalars, vectors, tensors, and so on, mandatory in physics. We show that the Chevalley isomorphism theorem cannot be generalized to algebras if the Z_n-grading or other structures are added, e.g., a linear form. We work with pairs consisting of a Clifford algebra and a linear form or a Z_n-grading which we now call 'Clifford algebras of multi-vectors' or 'quantum Clifford algebras'. It turns out, that in this sense, all multi-vector Clifford algebras of the same quadratic but different bilinear forms are non-isomorphic. The usefulness of such algebras in quantum field theory and superconductivity was shown elsewhere. Allowing for arbitrary bilinear forms however spoils their diagonalizability which has a considerable effect on the tensor decomposition of the Clifford algebras governed by the periodicity theorems, including the Atiyah-Bott-Shapiro mod 8 periodicity. We consider real algebras Cl_{p,q} which can be decomposed in the symmetric case into a tensor product Cl_{p-1,q-1} \otimes Cl_{1,1}. The general case used in quantum field theory lacks this feature. Theories with non-symmetric bilinear forms are however needed in the analysis of multi-particle states in interacting theories. A connection to q-deformed structures through nontrivial vacuum states in quantum theories is outlined.Comment: 25 pages, 1 figure, LaTeX, {Paper presented at the 5th International Conference on Clifford Algebras and their Applications in Mathematical Physics, Ixtapa, Mexico, June 27 - July 4, 199

    On Clifford Subalgebras, Spacetime Splittings and Applications

    Full text link
    Z2-gradings of Clifford algebras are reviewed and we shall be concerned with an alpha-grading based on the structure of inner automorphisms, which is closely related to the spacetime splitting, if we consider the standard conjugation map automorphism by an arbitrary, but fixed, splitting vector. After briefly sketching the orthogonal and parallel components of products of differential forms, where we introduce the parallel [orthogonal] part as the space [time] component, we provide a detailed exposition of the Dirac operator splitting and we show how the differential operator parallel and orthogonal components are related to the Lie derivative along the splitting vector and the angular momentum splitting bivector. We also introduce multivectorial-induced alpha-gradings and present the Dirac equation in terms of the spacetime splitting, where the Dirac spinor field is shown to be a direct sum of two quaternions. We point out some possible physical applications of the formalism developed.Comment: 22 pages, accepted for publication in International Journal of Geometric Methods in Modern Physics 3 (8) (2006
    corecore