419 research outputs found

    Effect of thawing on the quality of frozen mechanically deboned meat

    Get PDF
    The effect of thawing conditions on the quality of mechanically deboned beef (MDB) and mechanically deboned pork (MDP) recovered using a pressure-based Inject Star deboner was investigated. Samples were recovered using a freshly disinfected machine, and immediately packed in 3 kg portions in high density polyethylene (HDPE)-coated cartons or in Cryovac vacuum bags. Three methods of thawing were used: microwave thawing and thawing at +4°C and at +21°C. All samples were analysed chemically and microbiologically immediately after thawing. Microwave thawing resulted in a better quality product (

    Banana as adjunct in beer production: applicability and performance of fermentative parameters

    Get PDF
    Traditionally, the raw materials for beer production are barley, hops, water, and yeast, but most brewers use also different adjuncts. During the alcoholic fermentation, the contribution of aroma compounds from other ingredients to the final beer flavor depends on the wort composition, on the yeast strain, and mainly on the process conditions. In this context, banana can also be a raw material favorable to alcoholic fermentation being rich in carbohydrates and minerals and providing low acidity. In this work, the objective was to evaluate the performance of wort adjusted with banana juice in different concentrations. For this, static fermentations were conducted at 15 °C at pilot scale (140 L of medium). The addition of banana that changed the concentration of all-malt wort from 10 °P to 12 and 15 °P were evaluated (°P is the weight of the extract or the sugar equivalent in 100 g solution, at 20 °C). The results showed an increase in ethanol production, with approximately 0.4 g/g ethanol yield and 0.6 g/L h volumetric productivity after 84 h of processing when concentrated wort was used. Thus, it was concluded that banana can be used as an adjunct in brewing methods, helping in the development of new products as well as in obtaining concentrated worts.Fundação para a Ciência e a Tecnologia (FCT)EMATER-MGJohnson-DiverseyFapesp (Fundação de Amparo à Pesquisa do Estado de São Paulo/Brasil)Wallerstein Industrial & CommercialNovozymesCAPES (Coordenação para Aperfeiçoamento do Ensino Superior/ Brasil)Malteria do ValeGRICES (Gabinete de Relações Internacionais da Ciência e do Ensino Superior/Portugal

    Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules

    Full text link
    We present a method for controlled connection of gold electrodes with dsDNA molecules (locally on a chip) by utilizing polymerase to elongate single-stranded DNA primers attached to the electrodes. Thiol-modified oligonucleotides are directed and immobilized to nanoscale electrodes by means of dielectrophoretic trapping, and extended in a procedure mimicking PCR, finally forming a complete dsDNA molecule bridging the gap between the electrodes. The technique opens up opportunities for building from the bottom-up, for detection and sensing applications, and also for molecular electronics.Comment: 5 pages, 3 figures; Nanoscale (2011

    Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials

    Get PDF
    Despite extensive research carried out in the last few decades, continuous beer fermentation has not yet managed to outperform the traditional batch technology. An industrial breakthrough in favour of continuous brewing using immobilized yeast could be expected only on achievement of the following process characteristics: simple design, low investment costs, flexible operation, effective process control and good product quality. The application of cheap carrier materials of by-product origin could significantly lower the investment costs of continuous fermentation systems. This work deals with a complete continuous beer fermentation system consisting of a main fermentation reactor (gas-lift) and a maturation reactor (packedbed) containing yeast immobilized on spent grains and corncobs, respectively. The suitability of cheap carrier materials for long-term continuous brewing was proved. It was found that by fine tuning of process parameters (residence time, aeration) it was possible to adjust the flavour profile of the final product. Consumers considered the continuously fermented beer to be of a regular quality. Analytical and sensorial profiles of both continuously and batch fermented beers were compared.(Fundação de Amparo a Pesquisa do Estado de São Paulo, Brazil (FAPESPFundação para a Ciência e a Tecnologia (FC

    Heat and moisture exchangers (HMEs) and heated humidifiers (HHs) in adult critically ill patients: a systematic review, meta-analysis and meta-regression of randomized controlled trials

    Get PDF
    The aims of this systematic review and meta-analysis of randomized controlled trials are to evaluate the effects of active heated humidifiers (HHs) and moisture exchangers (HMEs) in preventing artificial airway occlusion and pneumonia, and on mortality in adult critically ill patients. In addition, we planned to perform a meta-regression analysis to evaluate the relationship between the incidence of artificial airway occlusion, pneumonia and mortality and clinical features of adult critically ill patients

    The role of the <i>Ah</i> locus in hexachlorobenzene-induced porphyria. Studies in congenic C57BL/6J mice

    Full text link
    The role of the Ah locus in hexachlorobenzene (HCB)-induced porphyria and the possible involvement of P-450 cytochromes P(1)450 and P(3)450 in the pathogenesis of this disease were investigated in two congenic strains of C57BL/6J mice that differ only at this locus. Female B6-Ahb mice (Ah receptor: approximately 30-70 fmol/mg of cytosolic protein) and B6-Ahd mice (Ah receptor: undetectable) were pretreated with iron (500 mg/kg) and then fed a diet containing 0 or 200 p.p.m. of HCB for up to 17 weeks. Mice from the two strains consumed similar amounts of HCB. Urinary excretion of porphyrins was increased after 7 weeks of HCB treatment in B6-Ahb mice, and after 15 weeks was over 200 times greater than that of mice given iron only. In B6-Ahd mice, porphyrin excretion did not begin to increase until after 13 weeks, and after 15 weeks was only six times greater than that of controls. Similar differences were seen in the 15-week hepatic porphyrin concentrations (B6-Ahb: 1110 +/- 393; B6-Ahd: 17.6 +/- 14.5; controls: approximately 0.20 nmol/g). Uroporphyrinogen decarboxylase (EC 4.1.1.37) activity was diminished by 70 and 20% in B6-Ahb B6-Ahd mice respectively after 15 weeks of treatment with HCB. Cytochromes P(1)450 and P(3)450 were measured in hepatic microsomes (microsomal fractions) by radioimmunoassay and immunoblotting, using antisera raised against the orthologous rat isoenzymes P450c and P450d. HCB induced small amounts of a protein recognized by anti-P450c (P(1)450) in B6-Ahd mice, but not in B6-Ahd mice. Relatively large amounts of a protein recognized by anti-P450d (P(3)450) were induced in both strains, but to a somewhat greater extent in the B6-Ahb mice. The hepatic accumulation of HCB at 15 weeks was greater in B6-Ahb than in B6-Ahd mice, in association with elevated hepatic lipid levels in the former strain. The results of this experiment indicate that the Ah locus influences the susceptibility of C57BL/6J mice to HCB-induced porphyria and are consistent with the suggestion that the sustained induction of P(3)450 and/or P(1)450 may be a causative factor in the development of this disease.</jats:p

    Integrating CRISPR/Cas systems with programmable DNA nanostructures for delivery and beyond

    Get PDF
    Precise genome editing with CRISPR/Cas paves the way for many biochemical, biotechnological, and medical applications, and consequently, it may enable treatment of already known and still-to-be-found genetic diseases. Meanwhile, another rapidly emerging field—structural DNA nanotechnology—provides a customizable and modular platform for accurate positioning of nanoscopic materials, for e.g., biomedical uses. This addressability has just recently been applied in conjunction with the newly developed gene engineering tools to enable impactful, programmable nanotechnological applications. As of yet, self-assembled DNA nanostructures have been mainly employed to enhance and direct the delivery of CRISPR/Cas, but lately the groundwork has also been laid out for other intriguing and complex functions. These recent advances will be described in this perspective

    Applications of yeast flocculation in biotechnological processes

    Get PDF
    A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The construction of flocculating yeast strains includes not only the recombinant constitutive flocculent brewer’s yeast, but also recombinant flocculent yeast for lactose metabolisation and ethanol production. Furthermore, recent work on the heterologous β-galactosidase production using a recombinant flocculent Saccharomyces cerevisiae is considered. As bioreactors using flocculating yeast cells have particular properties, mainly associated with a high solid phase hold-up, a section dedicated to its operation is presented. Aspects such as bioreactor productivity and culture stability as well as bioreactor hydrodynamics and mass transfer properties of flocculating cell cultures are considered. Finally, the paper concludes describing some of the applications of high cell density flocculation bioreactors and discussing potential new uses of these systems.Fundação para a Ciência e a Tecnologia (FCT) – PRAXIS XXI - BD11306/97

    DNA-origami-directed virus capsid polymorphism

    Get PDF
    Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA–DNA origami structures to pave way for next-generation cargo protection and targeting strategies.</p
    corecore