126 research outputs found

    The effects of closeness on the election of a pairwise majority rule winner

    Get PDF
    Some studies have recently examined the effect of closeness on the probability of observing the monotonicity paradox in three-candidate elections under Scoring Elimination Rules. It has been shown that the frequency of such paradox significantly increases as elections become more closely contested. In this paper we consider the effect of closeness on one of the most studied notions in Social Choice Theory: The election of the Condorcet winner, i.e., the candidate who defeats any other opponent in pairwise majority comparisons, when she exists. To be more concrete, we use the well known concept of the Condorcet efficiency, that is, the conditional probability that a voting rule will elect the Condorcet winner, given that such a candidate exists. Our results, based on the Impartial Anonymous Culture (IAC) assumption, show that closeness has also a significant effect on the Condorcet efficiency of different voting rules in the class of Scoring and Scoring Elimination Rules

    Targeted capture of Dreb subfamily genes as candidates genes for drought tolerance polymorphism in natural population of Coffea canephora.

    Get PDF
    Coffea canephora, (Robusta), provides 33% of worldwide coffee production, 80% and 22% of Ugandan and Brazilian coffee production, respectively. Abiotic stress such as temperature variations or drought periods, aggravated by climate changes, are factors that affect this production. This sensitivity threatens both the steady supply of quality coffees and the livelihood of millions of people producing coffee. The natural genetic diversity of C. canephora offer a potential for detecting new genetic variants related to drought adaptation. In particular, modifications occurring in genes related to abiotic stress tolerance make these genes candidate for breeding programs in order to enhance the resilience to climate change

    Plasmacytoid Dendritic Cell Infection and Sensing Capacity during Pathogenic and Nonpathogenic Simian Immunodeficiency Virus Infection.

    Get PDF
    International audienceHuman immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques (MAC) lead to chronic inflammation and AIDS. Natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM), are protected against SIV-induced chronic inflammation and AIDS. Here, we report that AGM plasmacytoid dendritic cells (pDC) express extremely low levels of CD4, unlike MAC and human pDC. Despite this, AGM pDC efficiently sensed SIVagm, but not heterologous HIV/SIV isolates, indicating a virus-host adaptation. Moreover, both AGM and SM pDC were found to be, in contrast to MAC pDC, predominantly negative for CCR5. Despite such limited CD4 and CCR5 expression, lymphoid tissue pDC were infected to a degree similar to that seen with CD4(+) T cells in both MAC and AGM. Altogether, our finding of efficient pDC infection by SIV in vivo identifies pDC as a potential viral reservoir in lymphoid tissues. We discovered low expression of CD4 on AGM pDC, which did not preclude efficient sensing of host-adapted viruses. Therefore, pDC infection and efficient sensing are not prerequisites for chronic inflammation. The high level of pDC infection by SIVagm suggests that if CCR5 paucity on immune cells is important for nonpathogenesis of natural hosts, it is possibly not due to its role as a coreceptor. The ability of certain key immune cell subsets to resist infection might contribute to the asymptomatic nature of simian immunodeficiency virus (SIV) infection in its natural hosts, such as African green monkeys (AGM) and sooty mangabeys (SM). This relative resistance to infection has been correlated with reduced expression of CD4 and/or CCR5. We show that plasmacytoid dendritic cells (pDC) of natural hosts display reduced CD4 and/or CCR5 expression, unlike macaque pDC. Surprisingly, this did not protect AGM pDC, as infection levels were similar to those found in MAC pDC. Furthermore, we show that AGM pDC did not consistently produce type I interferon (IFN-I) upon heterologous SIVmac/HIV type 1 (HIV-1) encounter, while they sensed autologous SIVagm isolates. Pseudotyping SIVmac/HIV-1 overcame this deficiency, suggesting that reduced uptake of heterologous viral strains underlays this lack of sensing. The distinct IFN-I responses depending on host species and HIV/SIV isolates reveal the host/virus species specificity of pDC sensing

    Dihaploid Coffea arabica genome sequencing and assembly.

    Get PDF
    Coffea arabica which accounts for 70% of world coffee production is an allotetraploid with a genome size of approximately 1.3 Gb and is derived from the hybridization of C. canephora (710 Mb) and C. eugenioides (670 Mb). To elucidate the evolutionary history of C. arabica, and generate critical information for breeding programs, a sequencing project is underway to finalize a reference genome using a dihaploid line and a set of Menu Abstract: Dihaploid Coffea arabica Genome Sequencing and Assembly (Plant and Animal Genome XXIII Conference) https://pag.confex.com/pag/xxiii/webprogram/Paper16983.html [25/02/2015 15:00:12] 30 C. arabica accessions

    Characterization, high-resolution mapping and differential expression of three homologous PAL genes in Coffea canephora Pierre (Rubiaceae)

    Get PDF
    Phenylalanine ammonia lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway producing phenolics, widespread constituents of plant foods and beverages, including chlorogenic acids, polyphenols found at remarkably high levels in the coffee bean and long recognized as powerful antioxidants. To date, whereas PAL is generally encoded by a small gene family, only one gene has been characterized in Coffea canephora (CcPAL1), an economically important species of cultivated coffee. In this study, a molecular- and bioinformatic-based search for CcPAL1 paralogues resulted successfully in identifying two additional genes, CcPAL2 and CcPAL3, presenting similar genomic structures and encoding proteins with close sequences. Genetic mapping helped position each gene in three different coffee linkage groups, CcPAL2 in particular, located in a coffee genome linkage group (F) which is syntenic to a region of Tomato Chromosome 9 containing a PAL gene. These results, combined with a phylogenetic study, strongly suggest that CcPAL2 may be the ancestral gene of C. canephora. A quantitative gene expression analysis was also conducted in coffee tissues, showing that all genes are transcriptionally active, but they present distinct expression levels and patterns. We discovered that CcPAL2 transcripts appeared predominantly in flower, fruit pericarp and vegetative/lignifying tissues like roots and branches, whereas CcPAL1 and CcPAL3 were highly expressed in immature fruit. This is the first comprehensive study dedicated to PAL gene family characterization in coffee, allowing us to advance functional studies which are indispensable to learning to decipher what role this family plays in channeling the metabolism of coffee phenylpropanoids

    Last Men Standing: Chlamydatus Portraits and Public Life in Late Antique Corinth

    Get PDF
    Notable among the marble sculptures excavated at Corinth are seven portraits of men wearing the long chlamys of Late Antique imperial office. This unusual costume, contemporary portrait heads, and inscribed statue bases all help confirm that new public statuary was created and erected at Corinth during the 4th and 5th centuries. These chlamydatus portraits, published together here for the first time, are likely to represent the Governor of Achaia in his capital city, in the company of local benefactors. Among the last works of the ancient sculptural tradition, they form a valuable source of information on public life in Late Antique Corinth
    corecore