41 research outputs found

    Solar Intensity X-Ray and Particle Spectrometer SIXS : Instrument Design and First Results

    Get PDF
    The Solar Intensity X-ray and particle Spectrometer (SIXS) on the BepiColombo Mercury Planetary Orbiter ("Bepi") measures the direct solar X-rays, energetic protons, and electrons that bombard, and interact with, the Hermean surface. The interactions result in X-ray fluorescence and scattering, and particle induced X-ray emission (PIXE), i.e. "glow" of the surface in X-rays. Simultaneous monitoring of the incident and emitted radiation enables derivation of the abundances of some chemical elements and scattering properties of the outermost surface layer of the planet, and it may reveal other sources of X-ray emission, due to, for example, weak aurora-like phenomena in Mercury's exosphere. Mapping of the Hermean X-ray emission is the main task of the MIXS instrument onboard BepiColombo. SIXS data will also be used for investigations of the solar X-ray corona and solar energetic particles (SEP), both in the cruise phase and the passes of the Earth, Venus and Mercury before the arrival at Mercury's orbit, and the final science phase at Mercury's orbit. These observations provide the first-ever opportunity for in-situ measurements of the propagation of SEPs, their interactions with the interplanetary magnetic field, and space weather phenomena in multiple locations throughout the inner solar system far away from the Earth, and more extensively at Mercury's orbit. In this paper we describe the scientific objectives, design and calibrations, operational principles, and scientific performance of the final SIXS instrument launched to the mission to planet Mercury onboard BepiColombo. We also provide the first analysis results of science observations with SIXS, that were made during the Near-Earth Commissioning Phase and early cruise phase operations in 2018-19, including the background X-ray sky observations and "first light" observations of the Sun with the SIXS X-ray detection system (SIXS-X), and in-situ energetic electron and proton observations with the SIXS Particle detection system (SIXS-P).Peer reviewe

    Treatment of mastitis during lactation

    Get PDF
    Treatment of mastitis should be based on bacteriological diagnosis and take national and international guidelines on prudent use of antimicrobials into account. In acute mastitis, where bacteriological diagnosis is not available, treatment should be initiated based on herd data and personal experience. Rapid bacteriological diagnosis would facilitate the proper selection of the antimicrobial. Treating subclinical mastitis with antimicrobials during lactation is seldom economical, because of high treatment costs and generally poor efficacy. All mastitis treatment should be evidence-based, i.e., the efficacy of each product and treatment length should be demonstrated by scientific studies. Use of on-farm written protocols for mastitis treatment promotes a judicious use of antimicrobials and reduces the use of antimicrobials

    Solar Intensity X-Ray and Particle Spectrometer SIXS: Instrument Design and First Results

    Get PDF
    The Solar Intensity X-ray and particle Spectrometer (SIXS) on the BepiColombo Mercury Planetary Orbiter ("Bepi") measures the direct solar X-rays, energetic protons, and electrons that bombard, and interact with, the Hermean surface. The interactions result in X-ray fluorescence and scattering, and particle induced X-ray emission (PIXE), i.e. "glow" of the surface in X-rays. Simultaneous monitoring of the incident and emitted radiation enables derivation of the abundances of some chemical elements and scattering properties of the outermost surface layer of the planet, and it may reveal other sources of X-ray emission, due to, for example, weak aurora-like phenomena in Mercury's exosphere. Mapping of the Hermean X-ray emission is the main task of the MIXS instrument onboard BepiColombo. SIXS data will also be used for investigations of the solar X-ray corona and solar energetic particles (SEP), both in the cruise phase and the passes of the Earth, Venus and Mercury before the arrival at Mercury's orbit, and the final science phase at Mercury's orbit. These observations provide the first-ever opportunity for in-situ measurements of the propagation of SEPs, their interactions with the interplanetary magnetic field, and space weather phenomena in multiple locations throughout the inner solar system far away from the Earth, and more extensively at Mercury's orbit. In this paper we describe the scientific objectives, design and calibrations, operational principles, and scientific performance of the final SIXS instrument launched to the mission to planet Mercury onboard BepiColombo. We also provide the first analysis results of science observations with SIXS, that were made during the Near-Earth Commissioning Phase and early cruise phase operations in 2018-19, including the background X-ray sky observations and "first light" observations of the Sun with the SIXS X-ray detection system (SIXS-X), and in-situ energetic electron and proton observations with the SIXS Particle detection system (SIXS-P)

    Adenovirus-mediated gene transfer of a secreted form of human macrophage scavenger receptor inhibits modified low-density lipoprotein degradation and foam-cell formation in macrophages.

    No full text
    BACKGROUND: Macrophage scavenger receptors (MSRs) play an important role in the pathogenesis of atherosclerosis. Therefore, local modulation of MSR activity could have a beneficial effect on atherogenesis. METHODS AND RESULTS: We cloned a secreted "decoy" MSR (sMSR) that contains an extracellular portion of the human MSR type AI and constructed an adenoviral vector that directs high-level expression of sMSR in macrophages under the control of the human CD68 promoter. Expression of the sMSR protein inhibited the degradation of (125)I-labeled acetylated LDL and oxidized LDL by murine macrophages up to 90%. sMSRs also reduced acetylated LDL degradation in MSR knockout mouse peritoneal macrophages by 60% to 80%, which suggests that the decoy construct can compete for the uptake mediated via other related scavenger receptors. In addition, sMSRs inhibited foam-cell formation in murine macrophages in the presence of cytochalasin D. The mechanism of inhibition is through ligand binding to the sMSRs, which prevents the ligand binding to MSRs on cell membranes. CONCLUSIONS: The demonstration that recombinant adenovirus-mediated gene transfer of decoy sMSRs can block foam-cell formation suggests a possible new strategy for gene therapy of atherosclerosis and for the treatment of lipid accumulation after arterial manipulations
    corecore