2,998 research outputs found

    Hybridisations within the genus Schistosoma: implications for evolution, epidemiology and control

    Get PDF

    Molecular Dynamics in grafted layers of poly(dimethylsiloxane) (PDMS)

    Full text link
    Dielectric relaxation spectroscopy 10^-1 Hz to 10^6 Hz) is employed to study the molecular dynamics of poly(dimethylsiloxane) (PDMS, Mw=1.7 10^5 g/mol and Mw=9.6 10^4 g/mol as grafted films with thicknesses d below and above the radius of gyration Rg. For d smaller than Rg the molecular dynamics becomes faster by up to three orders of magnitude with respect to the bulk resulting in a pronounced decrease of the Vogel temperature T0 and hence the calorimetric glass transition temperature Tg. For d larger than Rg the molecular dynamics is comparable to that of the bulk melt. The results are interpreted in terms of a chain confinement effect and compared with the findings for low molecular eight glass forming liquids contained in nanoporous glasses and zeolites. Crystallization effects - well known for PDMS - are observed for films of thicknesses above and below Rg.Comment: 20 pages, 4 figure

    Materials selection for long life in LEO: A critical evaluation of atomic oxygen testing with thermal atom systems

    Get PDF
    The use of thermal atom test methods as a materials selection and screening technique for low-Earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined to be in thermal atom environments are compared to those observed in LEO and in high quality LEO simulations. Reaction efficiencies measured in a new type of thermal atom apparatus are one-hundredth to one-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of 8 in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain specific thermal test environments can be used as reliable materials screening tools. Using thermal atom methods to predict material lifetime in LEO requires direct calibration of the method against LEO data or high quality simulation data for each material

    Increased yields of marine fish and shrimp production through application of innovative techniques with <i>Artemia</i>

    Get PDF
    The larval culture of fish and shrimp can be seriously improved thanks to the results of recent research and developments in the field of Artemia production and utilisation.The present article provides a historical overview of Artemia cyst demand and provision, summarizes the latest results of Artemia production in extensive and intensive culture systems and correlates the increased outputs in fish and shrimp hatcheries with improved applications of various Artemia products

    Contamination of spacecraft by recontact of dumped liquids

    Get PDF
    Liquids partially freeze when dumped from spacecraft producing particles which are released into free space at various velocities. Recontact of these particles with the spacecraft is possible for specific particle sizes and velocities and, therefore, can become contamination for experiments within the spacecraft or released experiments as a result of waste and potable water dumped from Space Shuttle. An examination of dump characteristics was conducted on STS-29 using both on-board video records and ground based measurements. A preliminary analysis of data from this flight indicates particle velocities are in the range of 30 to 75 ft/sec and recontact is possible for limited particle sizes

    Autonomous Instrument Placement for Mars Exploration Rovers

    Get PDF
    Autonomous Instrument Placement (AutoPlace) is onboard software that enables a Mars Exploration Rover to act autonomously in using its manipulator to place scientific instruments on or near designated rock and soil targets. Prior to the development of AutoPlace, it was necessary for human operators on Earth to plan every motion of the manipulator arm in a time-consuming process that included downlinking of images from the rover, analysis of images and creation of commands, and uplinking of commands to the rover. AutoPlace incorporates image analysis and planning algorithms into the onboard rover software, eliminating the need for the downlink/uplink command cycle. Many of these algorithms are derived from the existing groundbased image analysis and planning algorithms, with modifications and augmentations for onboard use

    One Health: parasites and beyond

    Get PDF
    The field of parasitism is broad, encompassing relationships between organisms where one benefits at the expense of another. Traditionally the discipline focuses on eukaryotes, with the study of bacteria and viruses complementary but distinct. Nonetheless, parasites vary in size and complexity from single celled protozoa, to enormous plants like those in the genus Rafflesia. Lifecycles range from obligate intracellular to extensive exoparasitism. Examples of parasites include high profile medical and zoonotic pathogens such as Plasmodium, veterinary pathogens of wild and captive animals and many of the agents which cause neglected tropical diseases, stretching to parasites which infect plants and other parasites (e.g. (Blake et al., 2015; Hemingway, 2015; Hotez et al., 2014; Kikuchi et al., 2011; Meekums et al., 2015; Sandlund et al., 2015). The breadth of parasitology has been matched by the variety of ways in which parasites are studied, drawing upon biological, chemical, molecular, epidemiological and other expertise. Despite such breadth bridging between disciplines has commonly been problematic, regardless of extensive encouragement from government agencies, peer audiences and funding bodies promoting multi-disciplinary research. Now, progress in understanding and collaboration can benefit from establishment of the One Health concept (Stark et al., 2015; Zinsstag et al., 2012). One Health draws upon biological, environmental, medical, veterinary and social science disciplines in order to improve human, animal and environmental health, although it remains tantalizingly difficult to engage many relevant parties. For infectious diseases traditional divides have been exacerbated as the importance of wildlife reservoirs, climate change, food production systems and socio-economic diversity have been recognised but often not addressed in a multi-disciplinary manner. In response the 2015 Autumn Symposium organized by the British Society for Parasitology (BSP; https://www.bsp.uk.net/home/) was focused on One Health, running under the title ‘One Health: parasites and beyond…’. The meeting, held at the Royal Veterinary College (RVC) in Camden, London from September 14th to 15th, drew upon a blend of specialist parasitology reinforced with additional complementary expertise. Scientists, advocates, policy makers and industry representatives were invited to present at the meeting, promoting and developing One Health understanding with relevance to parasitology. The decision to widen the scope of the meeting to non-parasitological, but informative topics, is reflected in the diversity of the articles included in this special issue. A key feature of the meeting was encouragement of early career scientists, with more than 35% of the delegates registered as students and 25 posters

    An experimental testbed for NEAT to demonstrate micro-pixel accuracy

    Full text link
    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. In NEAT, one fundamental aspect is the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 4e-5 pixel at Nyquist sampling. Simulations showed that a precision of 2 micro-pixels can be reached, if intra and inter pixel quantum efficiency variations are calibrated and corrected for by a metrology system. The European part of the NEAT consortium is designing and building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we give the basic relations and trade-offs that come into play for the design of a centroid testbed and its metrology system. We detail the different conditions necessary to reach the targeted precision, present the characteristics of our current design and describe the present status of the demonstration.Comment: SPIE proceeding
    • …
    corecore