NEAT is an astrometric mission proposed to ESA with the objectives of
detecting Earth-like exoplanets in the habitable zone of nearby solar-type
stars. In NEAT, one fundamental aspect is the capability to measure stellar
centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for
centroid estimation have reached a precision of about 4e-5 pixel at Nyquist
sampling. Simulations showed that a precision of 2 micro-pixels can be reached,
if intra and inter pixel quantum efficiency variations are calibrated and
corrected for by a metrology system. The European part of the NEAT consortium
is designing and building a testbed in vacuum in order to achieve 5e-6 pixel
precision for the centroid estimation. The goal is to provide a proof of
concept for the precision requirement of the NEAT spacecraft. In this paper we
give the basic relations and trade-offs that come into play for the design of a
centroid testbed and its metrology system. We detail the different conditions
necessary to reach the targeted precision, present the characteristics of our
current design and describe the present status of the demonstration.Comment: SPIE proceeding