815 research outputs found

    Nonequilibrium entropy production for open quantum systems

    Full text link
    We consider open quantum systems weakly coupled to a heat reservoir and driven by arbitrary time-dependent parameters. We derive exact microscopic expressions for the nonequilibrium entropy production and entropy production rate, valid arbitrarily far from equilibrium. By using the two-point energy measurement statistics for system and reservoir, we further obtain a quantum generalization of the integrated fluctuation theorem put forward by Seifert [PRL 95, 040602 (2005)].Comment: 4 pages, 1 figur

    Magnetoresistance Effects in SrFeO(3-x): Dependence on Phase Composition and Relation to Magnetic and Charge Order

    Full text link
    Single crystals of iron(IV) rich oxides SrFeO(3-x) with controlled oxygen content have been studied by Moessbauer spectroscopy, magnetometry, magnetotransport measurements, Raman spectroscopy, and infrared ellipsometry in order to relate the large magnetoresistance (MR) effects in this system to phase composition, magnetic and charge order. It is shown that three different types of MR effects occur. In cubic SrFeO3 (x = 0) a large negative MR of 25% at 9 T is associated with a hitherto unknown 60 K magnetic transition and a subsequent drop in resistivity. The 60 K transition appears in addition to the onset of helical ordering at ~130 K. In crystals with vacancy-ordered tetragonal SrFeO(3-x) as majority phase (x ~0.15) a coincident charge/antiferromagnetic ordering transition near 70 K gives rise to a negative giant MR effect of 90% at 9 T. A positive MR effect is observed in tetragonal and orthorhombic materials with increased oxygen deficiency (x = 0.19, 0.23) which are insulating at low temperatures. Phase mixtures can result in a complex superposition of these different MR phenomena. The MR effects in SrFeO(3-x) differ from those in manganites as no ferromagnetic states are involved

    Detection of human bocavirus in children with Kawasaki disease

    Get PDF
    ABSTRACTHuman bocavirus (HboV) is an emerging virus that has been implicated as a cause of acute upper and lower respiratory tract infection in children. As no serological assay is available, PCR was used to screen nasopharyngeal, serum or stool samples from 16 patients with Kawasaki disease for HBoV nucleic acid. HBoV was identified by PCR in five (31.2%) patients, suggesting that this emerging virus may also play a pathogenic role in some cases of Kawasaki disease

    Why did Swiss citizens vote to ban tobacco advertising?

    Get PDF
    In February 2022, Swiss citizens agreed to modify the Swiss Constitution to ban tobacco advertising reaching children and adolescents. This case study analyses the arguments used by both opponents and supporters of the constitutional amendment. Opponents argued that the proposed regulation went too far, threatened the economy, restricted personal freedom, was superfluous as the current law already protected youth and that it opened the door to marketing bans of other harmful products. Proponents focused on youth protection and invoked the burden of smoking on public health and the fact that advertising bans are an effective evidence-based measure. A comparison with previous campaigns to ban tobacco advertising that had failed suggests factors accounting for the positive vote in 2022. These include the strategic framing of youth protection, the separation of tobacco from other issues (such as alcohol advertising), the deteriorating image of the tobacco industry and the ability of the proponents to mobilise a broad coalition of health and youth organisations, with improved funding and communication. The lessons may be instructive for other campaigns seeking to regulate commercial determinants of health

    Molecular dynamics simulation of aqueous solutions of 26-unit segments of p(NIPAAm) and of p(NIPAAm) "doped" with amino acid based comonomers

    Get PDF
    We have performed 75-ns molecular dynamics (MD) simulations of aqueous solutions of a 26-unit NIPAAm oligomer at two temperatures, 302 and 315 K, below and above the experimentally determined lower critical solution temperature (LCST) of p(NIPAAm). We have been able to show that at 315 K the oligomer assumes a compact form, while it keeps a more extended form at 302 K. A similar behavior has been demonstrated for a similar NIPAAm oligomer, where two units had been substituted by methacryloyl-l-valine (MAVA) comonomers, one of them being charged and one neutral. For another analogous oligomer, where the same units had been substituted by methacryloyl-l-leucine (MALEU) comonomers, no transition from the extended to the more compact conformation has been found within the same simulation time. Statistical analysis of the trajectories indicates that this transition is related to the dynamics of the oligomer backbone, and to the formation of intramolecular hydrogen bonds and water-bridges between distant units of the solute. In the MAVA case, we have also evidenced an important role of the neutral MAVA comonomer in stabilizing the compact coiled structure. In the MALEU case, the corresponding comonomer is not equally efficacious and, possibly, is even hindering the readjustment of the oligomer backbone. Finally the self-diffusion coefficient of water molecules surrounding the oligomers at the two temperatures for selected relevant times is observed to characteristically depend on the distance from the solute molecules

    Square cells in gravitational and capillary thermoconvection

    Full text link
    The onset of square convective cells in fluid layers heated from below is investigated. Amplitude equations an deduced from the Boussinesq equations and a standard stability analysis is performed. Square cells are shown to be preferred when the instability is mainly capillarity driven. The influence of the Prandtl and Blot numbers are examined. At small Pr, the Plot number has not very much influence and squares are always observed for thin enough layers. in large Prandtl number fluids, Pi must be larger than the limiting value 0.28 for squares to be stable

    Test of mode coupling theory for a supercooled liquid of diatomic molecules. II. q-dependent orientational correlators

    Full text link
    Using molecular dynamics computer simulations we study the dynamics of a molecular liquid by means of a general class of time-dependent correlators S_{ll'}^m(q,t) which explicitly involve translational (TDOF) and orientational degrees of freedom (ODOF). The system is composed of rigid, linear molecules with Lennard- Jones interactions. The q-dependence of the static correlators S_{ll'}^m(q) strongly depend on l, l' and m. The time dependent correlators are calculated for l=l'. A thorough test of the predictions of mode coupling theory (MCT) is performed for S_{ll}^m(q,t) and its self part S_{ll}^{(s)m}(q,t), for l=1,..,6. We find a clear signature for the existence of a single temperature T_c, at which the dynamics changes significantly. The first scaling law of MCT, which involves the critical correlator G(t), holds for l>=2, but no critical law is observed. Since this is true for the same exponent parameter lambda as obtained for the TDOF, we obtain a consistent description of both, the TDOF and ODOF, with the exception of l=1. This different behavior for l \ne 1 and l=1 can also be seen from the corresponding susceptibilities (chi'')_{ll}^m(q,omega) which exhibit a minimum at about the same frequency omega_{min} for all q and all l \ne 1, in contrast to (chi'')_{11}^m(q,omega) for which omega'_{min} approx 10 omega_{min} . The asymptotic regime, for which the first scaling law holds, shrinks with increasing l. The second scaling law of MCT (time-temperature superposition principle) is reasonably fulfilled for l \ne 1 but not for l=1. Furthermore we show that the q- and (l,m)-dependence of the self part approximately factorizes, i.e. S_{ll}^{(s)m}(q,t) \cong C_l^{(s)}(t) F_s(q,t) for all m.Comment: 11 pages of RevTex, 16 figure

    Dynamics of the rotational degrees of freedom in a supercooled liquid of diatomic molecules

    Full text link
    Using molecular dynamics computer simulations, we investigate the dynamics of the rotational degrees of freedom in a supercooled system composed of rigid, diatomic molecules. The interaction between the molecules is given by the sum of interaction-site potentials of the Lennard-Jones type. In agreement with mode-coupling theory (MCT), we find that the relaxation times of the orientational time correlation functions C_1^(s), C_2^(s) and C_1 show at low temperatures a power-law with the same critical temperature T_c, and which is also identical to the critical temperature for the translational degrees of freedom. In contrast to MCT we find, however, that for these correlators the time-temperature superposition principle does not hold well and that also the critical exponent gamma depends on the correlator. We also study the temperature dependence of the rotational diffusion constant D_r and demonstrate that at high temperatures D_r is proportional to the translational diffusion constant D and that when the system starts to become supercooled the former shows an Arrhenius behavior whereas the latter exhibits a power-law dependence. We discuss the origin for the difference in the temperature dependence of D (or the relaxation times of C_l^(s) and D_r. Finally we present results which show that at low temperatures 180 degree flips of the molecule are an important component of the relaxation dynamics for the orientational degrees of freedom.Comment: 17 pages of RevTex, 12 figure

    Epidemiology and clinical features of gastroenteritis in hospitalised children: prospective survey during a 2-year period in a Parisian hospital, France

    Get PDF
    International audienceRotavirus is recognised as the most important agent of severe acute gastroenteritis (AGE) in young children. In a 2-year prospective survey, we investigated the epidemiology and clinical features of the viral and bacterial pathogens in children hospitalised for AGE. The study was performed in a Parisian teaching hospital from November 2001 to May 2004. Clinical data were prospectively collected to assess the gastroenteritis severity (20-point Vesikari severity score, the need for intravenous rehydration, duration of hospitalisation). Stools were systematically tested for group A rotavirus, norovirus, astrovirus and adenovirus 40/41, sapovirus and Aichi virus and enteropathogenic bacteria. A total of 457 children (mean age 15.9 months) were enrolled. Viruses were detected in 305 cases (66.7%) and bacteria in 31 cases (6.8%). Rotaviruses were the most frequent pathogen (48.8%), followed by noroviruses (8.3%) and adenoviruses, astroviruses, Aichi viruses and sapoviruses in 3.5%, 1.5%, 0.9% and 0.4%, respectively. Cases of rotavirus gastroenteritis were significantly more severe than those of norovirus with respect to the Vesikari score, duration of hospitalisation and the need for intravenous rehydration. Rotaviruses were the most frequent and most severe cause in children hospitalised for AGE, and noroviruses also account for a large number of cases in this population

    Thermodynamic Field Theory with the Iso-Entropic Formalism

    Full text link
    A new formulation of the thermodynamic field theory (TFT) is presented. In this new version, one of the basic restriction in the old theory, namely a closed-form solution for the thermodynamic field strength, has been removed. In addition, the general covariance principle is replaced by Prigogine's thermodynamic covariance principle (TCP). The introduction of TCP required the application of an appropriate mathematical formalism, which has been referred to as the iso-entropic formalism. The validity of the Glansdorff-Prigogine Universal Criterion of Evolution, via geometrical arguments, is proven. A new set of thermodynamic field equations, able to determine the nonlinear corrections to the linear ("Onsager") transport coefficients, is also derived. The geometry of the thermodynamic space is non-Riemannian tending to be Riemannian for hight values of the entropy production. In this limit, we obtain again the same thermodynamic field equations found by the old theory. Applications of the theory, such as transport in magnetically confined plasmas, materials submitted to temperature and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein.Comment: 35 page
    corecore