37,605 research outputs found

    Experimental determination of cosmic ray charged particle intensity profiles in the atmosphere

    Get PDF
    Absolute cosmic-ray free air ionization and charged particle fluxes and dose rates throughout the atmosphere were measured on a series of balloon flights that commenced in 1968. Argon-filled ionization chambers equipped with solid-state electrometers, with different gas pressures and steel wall thicknesses, and a pair of aluminum-wall Gm counters have provided the basic data. These data are supplemented by measurements with air-filled and tissue equivalent ionization chambers and a scintillation spectrometer. Laboratory experiments together with analyses of the theoretical aspects of the detector responses to cosmic radiation indicate that these profiles can be determined to an overall accuracy of + or - 5 percent

    Application of A Distributed Nucleus Approximation In Grid Based Minimization of the Kohn-Sham Energy Functional

    Full text link
    In the distributed nucleus approximation we represent the singular nucleus as smeared over a smallportion of a Cartesian grid. Delocalizing the nucleus allows us to solve the Poisson equation for theoverall electrostatic potential using a linear scaling multigrid algorithm.This work is done in the context of minimizing the Kohn-Sham energy functionaldirectly in real space with a multiscale approach. The efficacy of the approximation is illustrated bylocating the ground state density of simple one electron atoms and moleculesand more complicated multiorbital systems.Comment: Submitted to JCP (July 1, 1995 Issue), latex, 27pages, 2figure

    Infrared spectroscopy of star formation in galaxies

    Get PDF
    The Brackett alpha and beta lines with 7.2 seconds angular and 350 km/s velocity resolution were observed in 11 infrared-bright galaxies. From these measurements extinctions, Lyman continuum fluxes, and luminosities due to OB stars were derived. The galaxies observed to date are NGC3690, M38, NGC 5195, Arp 220, NGC 520, NGC660, NGC1614, NGC 3079, NGC 6946, NGC 7714, and Maffei 2, all of which were suggested at some time to be starburst ogjects. The contributions of OB stars to the luminosities of these galaxies can be quantified from the measurements and range from insignificant to sufficient to account for the total energy output. The OB stellar luminosities observed are as high as 10 to the 12th solar luminosities in the galaxy NGC 1614. It is noteworthy that star formation can play very different roles in the infrared energy output of galaxies of similar luminosity, as for example Arp 220 and NGC 1614. In addition to probing the star formation process in these galaxies, the Brackett line measurements, when compared to radio and infrared continuum results, have revealed some unexpected and at present imperfectly understood phenomena: in some very luminous sources the radio continuum appears to be suppressed relative to the infrared recombination lines; in many galaxies there is a substantial excess of 10 micron flux over that predicted from simple models of Lyman alpha heating of dust if young stars are the only significant energy source

    Underground nuclear power plant siting

    Get PDF
    This study is part of a larger evaluation of the problems associated with siting nuclear power plants in the next few decades. This evaluation is being undertaken by the Environmental Quality Laboratory of the California Institute of Technology in conjunction with The Aerospace Corporation and several other organizations. Current efforts are directed toward novel approaches to siting plants within the State of California. This report contains the results of efforts performed by The Aerospace Corporation to provide input information to the larger evaluation relative to underground siting of large central station nuclear power plants. Projections of electric power demand in California and the country as a whole suggest that a major increase in generating capacity will be required. The problem is complicated beyond that of a large but straightforward extension of capital investment by increased emphasis on environmental factors combined with the early stage of commercial application and regulation of nuclear power sources. Hydroelectric power generation is limited by the availability of suitable sites, and fossil fueled plants are constrained by the availability of high quality fuels and the adverse environmental and/or economic impact from the use of more plentiful fuels. A substantial increase in the number of nuclear power plants is now under way. This source of power is expected to provide the maj or portion of increased capacity. Other power sources such as geothermal and nuclear fusion are unlikely to satisfy the national needs due to technical problems and the lack of a comprehensive development program. There are several problems associated with meeting the projected power demand. Chief among these is the location of acceptable and economic plant sites. Indeed a sufficient number of sites may not be found unless changes occur in the procedures for selecting sites, the criteria for accepting sites, or the type of site required. Placement of a nuclear plant underground has been suggested as an alternative to present siting practices. It is postulated that the advantages of underground siting in some situations may more than compensate for added costs so that such facilities could be preferred even where surface sites are available. By virtue of greater safety, reduced surface area requirements, and improved aesthetics, underground sites might also be found where acceptable surface sites are not available. Four small European reactors have been constructed partially underground but plans for large size commercial plants have not progressed. Consequently, the features of underground power plant siting are not well understood. Gross physical features such as depth of burial, number and size of excavated galleries, equipment layout, and access or exit shafts/tunnels must be specified. Structural design features of the gallery liners, containment structure, foundations, and gallery interconnections must also be identified. Identification of the nuclear, electrical, and support equipment appropriate to underground operation is needed. Operational features must be defined for normal operations, refueling, and construction. Several magazine articles have been published addressing underground concepts. but adequate engineering data is not available to support an evaluation of the underground concept. There also remain several unresolved questions relative to the advantages of underground siting as well as the costs and other possible penalties associated with this novel approach to siting. These include the degree of increased safety through improved containment; the extent and value of isolation from falling objects, e. g. aircraft; the value of isolation from surface storms and tidal waves; the value of protection from vandalism or sabotage; the extent by which siting constraints are relieved through reduced population-distance requirements or aggravated by underground construction requirements; and the value to be placed upon the aesthetic differences of a less visible facility. The study described in this report has been directed toward some of these questions and uncertainties. Within the study an effort has been made to identify viable configurations and structural liners for typical light water reactor nuclear power plants. Three configurations are summarized in Section 3. A discussion of the underground gallery liner design and associated structural analyses is presented in Section 4. Also addressed in the study and discussed in Section 5 are some aspects of containment for underground plants. There it is suggested that the need for large separations between the plant and population centers may be significantly reduced, or perhaps eliminated. Section 6 contains a brief discussion of operational considerations for underground plants. The costs associated with excavation and lining of the underground galleries have been estimated in Section 7. These estimates include an assessment of variations implied by different seismic loading assumptions and differences in geologic media. It is shown that these costs are a small percentage of the total cost of comparable surface plants. Finally, the parameters characterizing an acceptable underground site are discussed in Section 8. Material is also included in the appendices pertaining to foreign underground plants, span limits of underground excavations, potential siting areas for underground plants in the State of California, pertinent data from the Underground Nuclear Test Program, and other supporting technical discussions

    Cytokines in inflammatory bowel disease

    Get PDF
    Over the past decade, much has been learned regarding the role of various cytokines in the pathogenesis of inflammatory bowel disease. Several cytokine ‘knockout’ models in mice have been shown to develop colitis, while alterations in the production of various cytokines has been documented in human Crohn's disease and ulcerative colitis. In recent years, attempts have been made to treat these diseases through modulation of cytokine production or action. This review focuses on the cytokines that have been implicated in the pathogenesis of inflammatory bowel disease. The evidence for and against a role for particular cytokines in intestinal inflammation is reviewed, as is the experimental and clinical data suggesting that cytokines are rational targets for the development of new therapies

    Electrostatic fluctuations in cavities within polar liquids and thermodynamics of polar solvation

    Full text link
    We present the results of numerical simulations of fluctuations of the electrostatic potential and electric field inside cavities created in the fluid of dipolar hard spheres. We found that the thermodynamics of polar solvation dramatically changes its regime when the cavity size becomes about 4-5 times larger than the size of the liquid particle. The range of small cavities can be reasonably understood within the framework of current solvation models. On the contrary, the regime of large cavities is characterized by a significant softening of the cavity interface resulting in a decay of the fluctuation variances with the cavity size much faster than anticipated by both the continuum electrostatics and microscopic theories. For instance, the variance of potential decays with the cavity size R0R_0 approximately as 1/R04−61/R_0^{4-6} instead of the 1/R01/R_0 scaling expected from standard electrostatics. Our results suggest that cores of non-polar molecular assemblies in polar liquids lose solvation strength much faster than is traditionally anticipated.Comment: 10 pp, 10 fig

    Ionized Gas Motions and the Structure of Feedback Near a Forming Globular Cluster in NGC 5253

    Full text link
    We observed Brackett α\alpha 4.05μ\mum emission towards the supernebula in NGC 5253 with NIRSPEC on Keck II in adaptive optics mode, NIRSPAO, to probe feedback from its exciting embedded super star cluster (SSC). NIRSPEC's Slit-Viewing Camera was simultaneously used to image the K-band continuum at ∼\sim0.1′′0.1'' resolution. We register the IR continuum with HST imaging, and find that the visible clusters are offset from the K-band peak, which coincides with the Br α\alpha peak of the supernebula and its associated molecular cloud. The spectra of the supernebula exhibit Br α\alpha emission with a strong, narrow core. The linewidths are 65-76 km s−1^{-1}, FWHM, comparable to those around individual ultra-compact HII regions within our Galaxy. A weak, broad (FWHM≃\simeq150-175 km s−1^{-1}) component is detected on the base of the line, which could trace a population of sources with high-velocity winds. The core velocity of Br α\alpha emission shifts by +13 km s−1^{-1} from NE to SW across the supernebula, possibly indicating a bipolar outflow from an embedded object, or linked to a foreground redshifted gas filament. The results can be explained if the supernebula comprises thousands of ionized wind regions around individual massive stars, stalled in their expansion due to critical radiative cooling and unable to merge to drive a coherent cluster wind. Based on the absence of an outflow with large mass loss, we conclude that feedback is currently ineffective at dispersing gas, and the SSC retains enriched material out of which it may continue to form stars.Comment: 24 pages, 9 figure
    • …
    corecore