3 research outputs found

    Mutant polycystin-2 induces proliferation in primary rat tubular epithelial cells in a STAT-1/p21-independent fashion accompanied instead by alterations in expression of p57KIP2 and Cdk2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal Dominant Polycystic Kidney Disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that destroy the kidney architecture resulting in end-stage renal failure. Mutations in genes <it>PKD1 </it>and <it>PKD2 </it>account for nearly all cases of ADPKD. Increased cell proliferation is one of the key features of the disease. Several studies indicated that polycystin-1 regulates cellular proliferation through various signaling pathways, but little is known about the role played by polycystin-2, the product of <it>PKD2</it>. Recently, it was reported that as with polycystin-1, polycystin-2 can act as a negative regulator of cell growth by modulating the levels of the cyclin-dependent kinase inhibitor, p21 and the activity of the cyclin-dependent kinase 2, Cdk2.</p> <p>Methods</p> <p>Here we utilized different kidney cell-lines expressing wild-type and mutant <it>PKD2 </it>as well as primary tubular epithelial cells isolated from a PKD transgenic rat to further explore the contribution of the p21/Cdk2 pathway in ADPKD proliferation.</p> <p>Results</p> <p>Surprisingly, over-expression of wild-type <it>PKD2 </it>in renal cell lines failed to inactivate Cdk2 and consequently had no effect on cell proliferation. On the other hand, expression of mutated <it>PKD2 </it>augmented proliferation only in the primary tubular epithelial cells of a rat model but this was independent of the STAT-1/p21 pathway. On the contrary, multiple approaches revealed unequivocally that expression of the cyclin-dependent kinase inhibitor, p57<sup>KIP2</sup>, is downregulated, while p21 remains unchanged. This p57 reduction is accompanied by an increase in Cdk2 levels.</p> <p>Conclusion</p> <p>Our results indicate the probable involvement of p57<sup>KIP2 </sup>on epithelial cell proliferation in ADPKD implicating a new mechanism for mutant polycystin-2 induced proliferation. Most importantly, contrary to previous studies, abnormal proliferation in cells expressing mutant polycystin-2 appears to be independent of STAT-1/p21.</p

    Familial Mediterranean Fever (FMF) mutations occur frequently in the Greek-Cypriot population of Cyprus

    No full text
    Familial Mediterranean Fever (FMF) is an autosomal recessive disease of high prevalence within Mediterranean countries and particularly common in four ethnic populations: Arabs, non-Ashkenazi Jews, Armenians, and Turks. The responsible gene MEFV has been assigned to chromosome 16p13.3. Our aim was to establish the frequencies of the most common mutations in Greek-Cypriots. We found that 1 in 25 is a carrier of one of three mutations. V726A, M694V, and F479L. In 68 Greek-Cypriot FMF chromosomes analyzed, we found V726A (25%), F479L (20.6%), M694V (17.6%), and others (36.8%). Mutation F479L, relatively common in this population, is very rare elsewhere. Our study indicates that FMF is not a rare condition in Cyprus and that, because of the significant morbidity associated with this disorder, which is often diagnosed only after unnecessary surgeries, a newborn screening program to detect affecteds in this population may be warranted
    corecore